Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bioenergy Choices Could Dramatically Change Midwest Bird Diversity

05.10.2010
Ambitious plans to expand acreage of bioenergy crops could have a major impact on birds in the Upper Midwest, according to a study published yesterday (Oct. 4) in the online edition of the Proceedings of the National Academy of Sciences (PNAS). Combining data from bird surveys and land usage, two University of Wisconsin-Madison researchers calculated changes in the number of bird species after widespread planting of bioenergy crops.

The study compared two approaches to bioenergy feedstocks: monocultures of annuals, such as corn, or perennial cultures of prairie plants and grasses.

Because diverse plantings are more conducive to a diversity of animals, the researchers were not surprised to find that a large-scale increase in row crops would decrease bird biodiversity, says co-author Claudio Gratton, an associate professor of entomology. The study showed that planting almost 23 million acres of corn or similar crops on marginal lands in the Upper Midwest could reduce the number of bird species by 7 percent to 65 percent in much of the region.

The decrease was especially acute in the diverse, hilly landscapes of southwest Wisconsin, where row crops are relatively rare.

Gratton and Tim Meehan, a postdoctoral fellow at the Great Lakes Bioenergy Research Center on campus, wanted to know how changes in biofuel production would affect wildlife, particularly birds, which have historically been well studied by amateurs.

To examine how many birds live on various landscapes today, they relied on the annual breeding bird survey, in which birdwatchers record every species they see or hear along preset routes.

The computer model that Meehan and Gratton developed showed that planting almost 21 million acres of perennial crops for bioenergy could increase bird biodiversity by 25 percent to 100 percent in some locales. The increase would be especially high in places like central Illinois and Iowa, where row crops are now dominant.

Today, almost all biofuel comes in the form of ethanol, used as a gasoline additive, but further increases in ethanol production could have widespread environmental effects, says Gratton, a landscape ecologist. “You can look at ethanol and make a calculation about how much energy you can get out of the landscape, but what other effects will follow if you plant so much acreage in biofuel crops?”

Crops can store carbon in the soil, tempering global warming, or affect the runoff of water, fertilizer or pesticide, Gratton notes. “As biofuels continue to gain traction, these are going to be real environmental questions to consider.”

The researchers focused on plantings on marginal lands rather than top-grade cropland, says Gratton, because of concerns that expanded biofuel production will take a further bite from food production. According to the June edition of Ethanol Producer, 34 percent of total U.S. corn production was devoted to ethanol this year.

Although scientists have debated how corn ethanol will affect the supply and price of food, and whether it delivers a net global warming benefit, the study was the first to look at the biological impact of different strategies for growing bioenergy crops.

Today, most biofuel ethanol is made from corn, but the Great Lakes Bioenergy Research Center, housed at UW-Madison and Michigan State University, is focusing on techniques for extracting biofuels from cellulose, which would expand the possible sources of biofuels to include crops such as switchgrass and many types of inedible biomass. At that point, says Gratton, farmers and society as a whole will face a decision about what crops best serve social needs.

“The center had the foresight to devote considerable effort to exploring the sustainability aspects of biofuels,” says Gratton. “At some point, you’ve got to take these crops out and put them on the landscape, and that can affect wildlife for good or bad.”

Land-use decisions are typically made based on a single factor such as crop productivity or profitability, Gratton says, but in fact, changing how land is used usually has multiple impacts. As a result, he says, “People are starting to think about bundles of effects, on water quality, greenhouse gas emissions, or on beneficial insects that need certain habitats to survive.”

Insect pollinators, for example, need flowers for food, and habitat for nesting, and converting more acreage to row crops will further decrease their numbers. “Altering the landscape can eliminate a free ecosystem service,” Gratton says. “By increasing yield through monocultures, you might lose water quality, or lose pollinators, and you may have to pay a price to compensate for those losses.”

Insects may be helpful, but birds are easier to study, because they have attracted so much attention from amateurs over the years, Gratton says. “The results were really striking: the more corn you have, the fewer bird species you are going to get. And the rarest species, which often tend to be grassland species, will take a particular hit. But when you increase the proportion of grasslands, you see a big increase in species richness, because the threatened species that require grasslands, like the bobolink, tend to increase the most.”

David Tenenbaum | Newswise Science News
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>