Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bioelectrical signals turn stem cells' progeny cancerous

19.10.2010
Newly discovered 'instructor cells' can deliver deadly directions

Biologists at Tufts University School of Arts and Sciences have discovered that a change in membrane voltage in newly identified "instructor cells" can cause stem cells' descendants to trigger melanoma-like growth in pigment cells.

The Tufts team also found that this metastatic transformation is due to changes in serotonin transport. The discovery could aid in the prevention and treatment of diseases like cancer and vitiligo as well as birth defects.

The research is reported in the October 19, 2010, issue of Disease Models and Mechanisms.

"Discovering this novel bioelectric signal and new cell type could be very important in efforts to understand the mechanisms that coordinate stem cell function within the host organism and prevent tumor growth. Ultimately it could enable us to guide cell behaviors toward regenerative medicine applications," said research leader and senior author Michael Levin, Ph.D., professor of biology and director of the Center for Regenerative and Developmental Biology at Tufts.

Co-authors on the paper were Tufts Postdoctoral Associate Douglas Blackiston, Research Associate Professor Dany S. Adams, Research Associate Joan M. Lemire and doctoral student Maria Lobikin.

Misregulation of stem cells is a known factor in cancers and birth defects. Recent studies have shown that stem cells exhibit unique electrophysiological profiles and that ionic currents controlled by ion channel proteins play important roles during stem cell differentiation. However, while many genetic and biochemical signaling pathways play a part in regulating the interplay between cells and the host organism, the role of bioelectric signals remains poorly understood, particularly when looking beyond artificial cultures to entire living organisms.

"One of the things we need to know is how cells know what to do in order to participate in the complex pattern of a host organism. The body normally tells cells 'don't become cancerous and go off on your own; instead, participate in keeping up the normal shape of all the tissues and organs, as individual cells age and die,'" said Levin.

To determine how changes in membrane voltage regulate cell behavior in vivo, the Tufts researchers looked at a group of stem cells in Xenopus laevis frog embryos called the neural crest. Neural crest stem cells migrate throughout the body in vertebrates, including humans. They give rise to many cell types, including pigmentation cells called melancocytes, and contribute to structures such as the heart, face and skin. Congenital malformations of the neural crest are known to affect their descendent cells and cause birth defects.

The Tufts biologists manipulated the electrical properties of a special, sparse cell population present throughout the embryo by using the common anti-parasitic drug ivermectin to open the glycine gated chloride channel (GlyCl). The GlyCl channel is one of the many ion channels that control cellular membrane voltage and is a marker of this unique "instructor cell" population. Changing the chloride ion level to hyperpolarize or depolarize the cells in turn triggered abnormal growth in distant melanocytes derived from the neural crest. These pigment cells not only grew in greater numbers but also formed long, branch-like shapes and thoroughly invaded neural tissues, blood vessels and gut. This pattern is typical of metastasis.

The ability of these GlyCl-expressing cells to radically change the shape, position, and quantity of a different cell type (melanocytes) revealed a new and potentially highly important cell type -- an instructor capability that can change the behavior of other cells a considerable distance away.

The researchers achieved similar results when they used a variety of different methods to manipulate transmembrane potential. Therefore, they concluded that the impact was triggered by the voltage change itself and was not intrinsically dependant on ivermectin, chloride flow or the GlyCl channel.

Testing of human epidermal melanocytes in a depolarizing medium also showed a shape change similar to that found in the Xenopus tadpoles.

The researchers also addressed the question of how cells sensed depolarization and converted this biophysical signal into changes in distant cells' behavior. After testing three potential mechanisms, they found that transport of serotonin (a neurotransmitter that can be modulated to regulate mood, appetite and other functions) across the cell surface was the likely messenger.

The Tufts researchers note that analysis of other ion channels might reveal other instructor cells that can signal and change the behavior of various important cells in the body. Learning to identify and manipulate such cell types may reveal additional roles for ion flows and establish a new model for control of cell behavior in regenerative medicine and oncology.

Levin and his colleagues are already pursuing avenues for early, non-invasive cancer detection using voltage-sensitive dyes and exploring techniques to normalize cancer by repolarizing abnormal cells and instructor cells.

The research was funded by the National Institutes of Health, Department of Defense, Forsyth Institute and NIH- National Institute of Dental and Craniofacial Research.

"Transmembrane voltage gradient in GlyCl-expressing cell population controls behavior in neural crest derivatives in vivo," Douglas Blackiston, Dany S. Adams, Joan M. Lemire, Maria Lobikin and Michael Levin, Disease Models and Mechanisms, October 19, 2010.

Tufts University, located on three Massachusetts campuses in Boston, Medford/Somerville, and Grafton, and in Talloires, France, is recognized among the premier research universities in the United States. Tufts enjoys a global reputation for academic excellence and for the preparation of students as leaders in a wide range of professions. A growing number of innovative teaching and research initiatives span all campuses, and collaboration among the faculty and students in the undergraduate, graduate and professional programs across the university is widely encouraged.

Kim Thurler | EurekAlert!
Further information:
http://www.tufts.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>