Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

BGI presents a high-quality gene catalog of human gut microbiome

07.07.2014

Researchers from BGI, working within the Metagenomics of the Human Intestinal Tract (MetaHIT) project, and in collaboration with other institutions around the world , have established the highest quality integrated gene set for the human gut microbiome to date- a close-to-complete catalogue of the microbes that reside inside us and massively outnumber our own cells.

While the roughly 20,000 genes in the human genome have been available for over a decade, the gene catalog of the microbiome, our much larger "other genome", has to date been much more poorly understood and characterized.

The data released from this study should facilitate further research on the interactions between human and microbial genomes, and brings us closer to an understanding of how to maintain the microbial balance that keeps us healthy. The latest study was published online today in the journal Nature Biotechnology.

Each of our guts is colonized by more than 3 pounds of microorganisms that can break down toxins, manufacture vitamins and essential amino acids, and form a barrier against invaders. However, until now there has been a lack of comprehensive and uniformly processed database resources cataloging the human gut microbiota around the world, which has hindered our knowledge of the genetic and functional mechanism of human gut microbes.

In this study, researchers established a catalog of the human gut microbial genes by processing 249 newly sequenced samples and 1,018 published samples from MetaHIT, Human Microbiome Project (HMP) and a large diabetes study from China, as well as 511 sequenced genomes of gut-related bacteria and archaea. This expanded research is at least three times larger than the cohorts used for previous gene catalogs.

Based upon the catalog, researchers investigated the gut microbiota of healthy Chinese and Danish adults, and found the two cohorts greatly differed in nutrient metabolism as well as xenobiotic detoxification, which might be influenced by the differences in diet and environment. In addition, they observed enrichment in possible antibiotic resistance genes both at the population level (penicillin resistance in Danes and multidrug resistance in Chinese) and in the individual-specific genes, which highlighted the need for close monitoring of direct and indirect exposure to antibiotics.

Individual-specific genes contributed overwhelmingly to the increased total gene number in the integrated gene catalog and were overrepresented in genes responsible for the synthesis of cell wall components, DNA-related functions such as transposases, endonucleases and DNA methylases and encoding phage-related proteins. Such individual-specific genes likely reflect adaptation and might reflect the distinct combination of genetic, nutritional and medical factors in a host.

This nonredundant reference catalog of over 9.8 million genes is freely accessible through the website and the data have also been deposited in BGI's GigaScience Database, GigaDB and the SRA. It provides a much expanded and invaluable resource for global researchers to more deeply explore the geographical, genetic, temporal and physiological characteristics of gut microbes.

Junhua Li, Research Scientist from BGI, said, "Catalogs of reference genes in the human gut microbiome should facilitate quantitative characterization of multi-omic data from the gut microbiome to understand its variation across populations in human health and disease."

Jia Liu | Eurek Alert!
Further information:
http://www.genomics.org.cn/

Further reports about: BGI Shenzhen genes genomes manufacture microbes microbial microbiota resistance

More articles from Life Sciences:

nachricht New Model of T Cell Activation
27.05.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Fungi – a promising source of chemical diversity
27.05.2016 | Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie - Hans-Knöll-Institut (HKI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>