Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Berlin’s neuroscientists decode important mechanism of nerve cell communication

21.12.2011
By researching fruit flies, neuroscientists of the NeuroCure Cluster of Excellence in Berlin were able to gain a better understanding of a meaningful mechanism of neuronal communication.

They demonstrated the importance of a specific protein for signal transmission between nerve cells. This is of high significance as certain people with autism – a functional development disturbances of the brain – suffer from genetic defects in this protein. Therefore the findings could improve the possibility of treating this disease more effectively. The results are presented in the latest issue of the professional journal Science.

When our brain is at work, for example when we are looking at a picture or planning a movement, its nerve cells communicate with each other. For this purpose they are equipped with specific points of contact, so called synapses. Both sides of a synapse are specialised and have a complex setup which makes sure that the transmission of information from an individual synapse is only ever possible in one direction. The sender – the presynaptic side – is filled with a neurotransmitter that is released in the direction of the recipient – the postsynaptic side – upon an electric command.

Although this may sound simple, it is a highly complicated biochemical process that takes place in less than a millisecond and is strictly controlled in terms of space and time. A great number of specialised proteins are required to cooperate and enable an optimal release of the neurotransmitter. The “RIM binding protein” (RBP) plays an important part in this respect. As demonstrated by the scientists of the NeuroCure Cluster of Excellence surrounding Stephan Sigrist (Freie Universität Berlin) and Dietmar Schmitz (Charité – Universitätsmedizin Berlin and Deutsches Zentrum für Neurodegenerative Erkrankungen), the RBP-protein is of great significance for releasing the neurotransmitter.

The neuroscientists used the fruit fly as a model organism. Thanks to the simple setup of its brain and synapses it is ideal for experimental examinations. At the same time, the fly’s synaptic proteins are very similar to those of humans due to common descent dating back hundreds of million years ago. Through functional experiments and a new method of high-resolution microscopy, the scientists gained insights into previously unknown areas where the transmission takes place. The neuroscientists found out that the RBP-protein holds a key position in the fruit fly’s presynapsis. It is necessary for effectively connecting the release of the neurotransmitter to the electric command, which enables the sensible communication between nerve cells.

There are more and more indications that genetic defects in the RBP-proteins are an important aspect of autism in humans. The initial functional description of the fruit fly’s RBP-protein therefore does not only extend our comprehension of neuronal communication, it also provides a reference point to help understand brain malfunctions that occur with autism. For this reason the neuroscientists are hoping to contribute to the fundamental principles of a more effective treatment.

NeuroCure is a Cluster of Excellence in the framework of the Excellence Initiative funded by the German federal and state governments since 2007. The interdisciplinary research alliance crosslinks fundamental neuroscientific research and clinical application to transfer scientific findings on the functioning of the nervous system and neurological diseases to effective therapies.

Contact:
Stephan Sigrist
Freie Universität Berlin
Takustr. 6
D-14195 Berlin
Tel: +49 (0)30 838-56940
E-mail: stephan.sigrist@fu-berlin.de

Carsten Wette | idw
Further information:
http://www.neurocure.de
http://www.fu-berlin.de

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>