Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beneficial organisms react differently to parasite drug

14.04.2014

The drug ivermectin is used around the world to combat parasites in humans and animals. The active ingredient is also known to harm dung-degrading beneficial organisms. An international research team headed up by evolutionary biologists at the University of Zurich have now demonstrated that certain dung organisms react more sensitively to ivermectin than previously assumed. Hence there is a need for more sophisticated field tests.

The substance ivermectin has been used for more than thirty years all over the world to combat parasites like roundworms, lice and mites in humans, livestock and pets. The active ingredient belongs to the chemical group of avermectins, which generally disrupt cell transport and thus attack pests.

When ivermectin is excreted in the faeces of treated animals, at overly high doses it also harms dung-degrading beneficial insects like dung beetles and dung flies. This impairs the functioning of the ecosystem. In extreme cases the dung is not decomposed and the pasture is destroyed.

Sensitivity to ivermectin varies considerably
Since 2000 public regulators in many countries therefore mandate standardised safety tests for the use of avermectin derivatives. An international research team headed up by Wolf Blanckenhorn, an evolutionary biologist at the University of Zurich, has now shown that the safety tests used today are not able to sufficiently prevent environmental damage. Even closely related dung organisms react with varying degrees of sensitivity to the same veterinary pharmaceutical.

Blanckenhorn and his colleagues examined 23 species of sepsid flies that typically live in cow dung. “The individual species vary by a factor of 500 in their sensitivity to ivermectin”, comments the evolutionary biologist. The standardised safety tests typically performed in toxicology in the laboratory today are based on single, arbitrarily selected dung organisms.

“There is a considerable risk that the more sensitive species will continue to be harmed by ivermectin and that important ecosystem functions will suffer long-term damage as a consequence”, says Blanckenhorn. To prevent this, safety tests should be extended at least to include a representative selection of all dung-degrading organisms, if not the entire community. “Clearly, these tests would massively increase the costs of the authorisation process for new drugs, and investigators would have to possess specialised biological expertise”, comments the biologist. For that reason a field test should be developed based on a genetic method of species identification, so-called DNA barcoding.

Evolutionary findings
With their study the authors further confirmed that in the course of evolution, as a consequence of pre-existing genetic modifications, first the sensitivity of moulting animals and later the non-sensitivity of particular species groups to avermectins has developed, long before any contact with the drug. Hence, their work also validates the still disputed molecular genetic classification of roundworms (nematodes) and arthropods as moulting animals, as only they are sensitive to avermectins.


The drug Ivermectin
Ivermectin was discovered in Japan in the late 1970s. Since then it has improved the quality of life of millions of people particularly in the tropics: ocular onchocerciasis, scabies and threadworms in the intestines can be successfully treated thanks to Ivermectin. Ivermectin is likewise used in animal husbandry across the globe.

Further reading:
N. Puniamoorthy, M. A. Schäfer, J. Römbke, R. Meier, and W. U. Blanckenhorn. Ivermectin sensitivity is an ancient trait affecting all ecdysozoa but shows phylogenetic clustering among sepsid flies. Evolutionary Applications, April 14, 2014. doi: 10.1111/eva.12152

W. U. Blanckenhorn, N. Puniamoorthy, M. A. Schäfer, A. Scheffczy, and J. Römbke. Standardized laboratory tests with 21 species of temperate and tropical sepsid flies confirm their suitability as bioassays of pharmaceutical residues (ivermectin) in cattle dung. Ecotoxicology and Environmental Safety. March 2013. doi: 10.1016/j.ecoenv.2012.10.020


Contacts:
Prof. Dr. Wolf U. Blanckenhorn
Institute of Evolutionary Biology and Environmental Studies
University of Zurich
Tel. +41 44 635 47 55
Email: wolf.blanckenhorn@ieu.uzh.ch

Weitere Informationen:

http://www.mediadesk.uzh.ch

Nathalie Huber | Universität Zürich

Further reports about: DNA Environmental Evolutionary Ivermectin animals damage ecosystem species

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>