Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Bees Learn Which Odors to Follow

28.02.2011
Scientists at Freie Universität Berlin and the Bernstein Center Berlin have traced odor memory to a certain area of the bee brain.

How successful bees are in their search for food depends largely on how well they can, based on their odors, detect nectar-rich flowers from a distance and distinguish them from less promising plants.

Researchers around Professor Randolf Menzel, a neurobiologist at Freie Universität’s Department of Biology, Chemistry, and Pharmacy, investigated how and whether bees can recognize a relationship between the odor and nectar of a particular flower and whether this association is localized in a certain area of the bee brain. The work was supported by the German Federal Ministry of Education and Research as part of the projects of Bernstein Center Berlin and Bernstein Focus Learning: Memory and Decision Making.

The researchers caught nectar-collecting bees when they were about to swarm out from their hive, and “sent them to school” in their lab. The curriculum contained five different artificial fragrances. First, the bees were introduced to all five odors. Then, in a learning phase, one of the odors was always followed by presentation of a drop of sugar solution, while another odor went unrewarded. This form of classical Pavlovian conditioning is based on the proboscis extension reflex, which is elicited when the bees’ antennas get into contact with sweet liquids. The bees quickly learned to extend their probosces and collect the sugar solution whenever the rewarded odor was presented. This response was faithfully maintained for three hours after learning.

To investigate the neural basis of this memory process, as part of his dissertation at Freie Universität, the biologist Martin Strube-Bloss, currently at the Max Planck Institute for Chemical Ecology in Jena, measured electrical reactions of certain nerve cells, namely the output neurons in the mushroom bodies of the bee brain, which had already been raised as candidates for learning. The result was surprising. During the learning phase, the activities in the neurons did not change at all. But three hours after learning, there was a change: more neurons responded to the rewarded stimulus, and the responses to the rewarded stimulus were stronger. So the researchers had actually found a memory trace. Because of its time delay, they could even conclude that it was not due to the learning process itself or to short-term memory, but that they had rather identified the seat of long-term odor memory.

Mathematical analysis by Martin Nawrot, a computational neurobiologist at Freie Universität Berlin, showed that the memory trace in the mushroom body is extremely reliable. Just 150 milliseconds after presentation of an odor, the researchers could already tell, on the basis of the output neurons of the mushroom body, whether it was the rewarded odor or not. So it seems that the bee could safely rely on this group of neurons in order to tell whether an odor is promising, or – in the wild – which odor it is worthwhile to follow in order to find a nectar-bearing flower.

On the basis of their results, the researchers are now developing a computer model of the bee brain that can associate virtual odors with rewards and is able to make decisions on the basis of what it has learned. In the near future, such artificial brains are then to be applied in biomimetic robots.

The Bernstein Center Berlin is part of the Bernstein Network Computational Neuroscience (NNCN) in Germany. The NNCN was established by the German Federal Ministry of Education and Research with the aim of structurally interconnecting and developing German capacities in the new scientific discipline of computational neuroscience. It was named in honor of the German physiologist Julius Bernstein (1835–1917).

For further information please contact:

• Prof. Martin Nawrot, Freie Universität Berlin, Institute of Biology – Neurobiology, Computational Neuroscience Group, Tel.: +49 (0)30 838 56692; Email: martin.nawrot@fu-berlin.de

• Dr. Martin Strube-Bloss, Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Tel.: +49 (0)3641 57 1452; Email: mstrube-bloss@ice.mpg.de

Original Publication:
Strube-Bloss MF*, Nawrot MP*, Menzel R (2011): Mushroom Body Output Neurons Encode Odor-Reward Associations, J. Neurosci. 31: 3129-3140, * equal contribution
Weitere Informationen:
http://www.bccn-berlin.de - Bernstein Center for Computational Neuroscience, Berlin
http://www.nncn.de - Bernstein Network for Computational Neuroscience
http://www.bcp.fu-berlin.de - Freie Universität Berlin
http://www.fu-berlin.de/neuroinformatik - Lab of Theoretical Neuroscience / Neuroinformatics of Prof. Nawrot, FU Berlin
http://www.ice.mpg.de - Max Planck Institute for Chemical Ecology, Jena

Dr. Simone Cardoso de Oliveira | idw
Further information:
http://www.nncn.de

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>