Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beer's Bitter

21.12.2012
The absolute configurations of the bitter acids of hops determined

During brewing, beer obtains its bitter flavor from the bitter acids that come from hops. In the journal Angewandte Chemie, scientists now report that they have used X-ray crystallography to determine the absolute configurations of these humulones and isohumulones, as well as several of their derivatives.



Humulones are bacteriostatic bitter substances from hops (Humulus lupulus) and act as natural preservatives. When beer wort is heated together with hops, rearrangement products are formed. These bitter compounds, known as iso-alpha acids or isohumulones, give beer its characteristic flavor. In addition, extracts of hops, such as the more stable tetrahydro-iso-alpha acids used by some brewers instead of hops, have been developed.

When humulones rearrange, a ring containing six carbon atoms converts into a five-membered ring. At the end of this process, two side groups may be arranged in two different ways: They can be on the same side or on opposite sides of the plane of the ring. The former arrangement is called the cis form and the latter is the trans form. But, in the cis-isohumulones, do the two side groups point up or down? And in the trans-isohumulone, which side group points up and which points down? In the six-membered ring of the original humulone there is a carbon atom in the ring with two different side groups attached to it. What is the absolute configuration (the “handedness) at this carbon atom?

A team headed by Werner Kaminsky has successfully answered these questions by means of X-ray crystallographic analysis. This project, undertaken by scientists at KinDex Therapeutics (Seattle) and the University of Washington (Seattle), was complex, because the isomerization process of humulones results in a large number of very similar compounds that had to be separated, purified, and the acids converted into suitable salts.

The absolute configurations of the hops bitter acids found by Kaminsky and his co-workers contradict some of the results previously reported in the literature, which raises the question of how suitable the indirect methods (Horeau method, Cotton effect) used for these studies really are for such investigations. Thanks to their new insights, the researchers have now also been able to determine the mechanism of the rearrangement in detail.

Why is the configuration so interesting? Although excessive beer consumption is not recommended, there are some indications that the hops bitter acids may have positive effects on diabetes, some forms of cancer, and inflammation, as well as weight loss. However, the effects seem to vary substantially depending on the absolute configuration. In addition, the various degrees of bitterness in beer seem to depend on the different forms of the tetrahydro-iso-alpha acids. Now that their stereochemistry is definitively known, these conjectures can be seriously tested, since the binding of iso-alpha acids to proteins requires that their “handedness” be compatible—like nuts and bolts.

About the Author
Dr. Werner Kaminsky, Research Associate Professor in the Department of Chemistry at the University of Washington, devotes a portion of his time to the study of chiral optical phenomena in crystals, for which he received the Philips Physical Crystallography Prize. He also serves the Department of Chemistry and local companies by carrying out X-ray crystallographic structure determinations of new compounds and develops software for the study of crystallography.
Author: Werner Kaminsky, University of Washington, Seattle (USA), http://depts.washington.edu/chem/people/faculty/kaminsky.html
Title: Absolute Configuration of Beer's Bitter Compounds
Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201208450

Werner Kaminsky | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://dx.doi.org/10.1002/anie.201208450

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>