Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beer's Bitter

21.12.2012
The absolute configurations of the bitter acids of hops determined

During brewing, beer obtains its bitter flavor from the bitter acids that come from hops. In the journal Angewandte Chemie, scientists now report that they have used X-ray crystallography to determine the absolute configurations of these humulones and isohumulones, as well as several of their derivatives.



Humulones are bacteriostatic bitter substances from hops (Humulus lupulus) and act as natural preservatives. When beer wort is heated together with hops, rearrangement products are formed. These bitter compounds, known as iso-alpha acids or isohumulones, give beer its characteristic flavor. In addition, extracts of hops, such as the more stable tetrahydro-iso-alpha acids used by some brewers instead of hops, have been developed.

When humulones rearrange, a ring containing six carbon atoms converts into a five-membered ring. At the end of this process, two side groups may be arranged in two different ways: They can be on the same side or on opposite sides of the plane of the ring. The former arrangement is called the cis form and the latter is the trans form. But, in the cis-isohumulones, do the two side groups point up or down? And in the trans-isohumulone, which side group points up and which points down? In the six-membered ring of the original humulone there is a carbon atom in the ring with two different side groups attached to it. What is the absolute configuration (the “handedness) at this carbon atom?

A team headed by Werner Kaminsky has successfully answered these questions by means of X-ray crystallographic analysis. This project, undertaken by scientists at KinDex Therapeutics (Seattle) and the University of Washington (Seattle), was complex, because the isomerization process of humulones results in a large number of very similar compounds that had to be separated, purified, and the acids converted into suitable salts.

The absolute configurations of the hops bitter acids found by Kaminsky and his co-workers contradict some of the results previously reported in the literature, which raises the question of how suitable the indirect methods (Horeau method, Cotton effect) used for these studies really are for such investigations. Thanks to their new insights, the researchers have now also been able to determine the mechanism of the rearrangement in detail.

Why is the configuration so interesting? Although excessive beer consumption is not recommended, there are some indications that the hops bitter acids may have positive effects on diabetes, some forms of cancer, and inflammation, as well as weight loss. However, the effects seem to vary substantially depending on the absolute configuration. In addition, the various degrees of bitterness in beer seem to depend on the different forms of the tetrahydro-iso-alpha acids. Now that their stereochemistry is definitively known, these conjectures can be seriously tested, since the binding of iso-alpha acids to proteins requires that their “handedness” be compatible—like nuts and bolts.

About the Author
Dr. Werner Kaminsky, Research Associate Professor in the Department of Chemistry at the University of Washington, devotes a portion of his time to the study of chiral optical phenomena in crystals, for which he received the Philips Physical Crystallography Prize. He also serves the Department of Chemistry and local companies by carrying out X-ray crystallographic structure determinations of new compounds and develops software for the study of crystallography.
Author: Werner Kaminsky, University of Washington, Seattle (USA), http://depts.washington.edu/chem/people/faculty/kaminsky.html
Title: Absolute Configuration of Beer's Bitter Compounds
Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201208450

Werner Kaminsky | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://dx.doi.org/10.1002/anie.201208450

More articles from Life Sciences:

nachricht Cloud Formation: How Feldspar Acts as Ice Nucleus
09.12.2016 | Karlsruher Institut für Technologie

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>