Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bee swarms follow high-speed 'streaker' bees to find a new nest

07.10.2008
It's one of the hallmarks of spring: a swarm of bees on the move. But how a swarm locates a new nest site when less than 5% of the community know the way remains a mystery.

Curious to find out how swarms cooperate and are guided to their new homes, Tom Seeley, a neurobiologist from Cornell University, and engineers Kevin Schultz and Kevin Passino from The Ohio State University teamed up to find out how swarms are guided to their new home and publish their findings on October 3rd 2008 in The Journal of Experimental Biology, http://jeb.biologists.org.

According to Schultz there are two theories on how swarms find the way. In the 'subtle guide' theory, a small number of scout bees, which had been involved in selecting the new nest site, guide the swarm by flying unobtrusively in its midst; near neighbours adjust their flight path to avoid colliding with the guides while more distant insects align themselves to the guides' general direction. In the 'streaker bee' hypothesis, bees follow a few conspicuous guides that fly through the top half of the swarm at high speed.

Schultz explains that Seeley already had still photographs of the streaks left by high-speed bees flying through a swarm's upper layers, but what Seeley needed was movie footage of a swarm on the move to see if the swarm was following high-velocity streakers or being unobtrusively directed by guides. Passino and Seeley decided to film swarming bees with high-definition movie cameras to find out how they were directed to their final destination.

But filming diffuse swarms spread along a 12·m length with each individual on her own apparently random course is easier said than done. For a start you have to locate your camera somewhere along the swarm's flight path, which is impossible to predict in most environments. The team overcame this problem by relocating to Appledore Island, which has virtually no high vegetation for swarms to settle on. By transporting large colonies of bees, complete with queen, to the island, the team could get the insects to swarm from a stake to the only available nesting site; a comfortable nesting box. Situating the camera on the most direct route between the two sites, the team successfully filmed several swarms' chaotic progress at high resolution.

Back in Passino's Ohio lab, Schultz began the painstaking task of analysing over 3500 frames from a swarm fly-by to build up a picture of the insects' flight directions and vertical position. After months of bee-clicking, Schultz was able to find patterns in the insects' progress. For example, bees in the top of the swarm tended to fly faster and generally aimed towards the nest, with bees concentrated in the middle third of the top layer showing the strongest preference to head towards the nest. Schultz also admits that he was surprised at how random the bees' trajectories were in the bottom half of the swarm, 'they were going in every direction,' he says, but the bees that were flying towards the new nest generally flew faster than bees that were heading in other directions; they appeared to latch onto the high-speed streakers. All of which suggests that the swarm was following high-speed streaker bees to their new location.

Kathryn Phillips | EurekAlert!
Further information:
http://www.biologists.com
http://jeb.biologists.org

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>