Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bats save energy by drawing in wings on upstroke

11.04.2012
Whether people are building a flying machine or nature is evolving one, there is pressure to optimize efficiency. A new analysis by biologists, physicists, and engineers at Brown University reveals the subtle but important degree to which that pressure has literally shaped the flapping wings of bats.

The team's observations and calculations show that by flexing their wings inward to their bodies on the upstroke, bats use only 65 percent of the inertial energy they would expend if they kept their wings fully outstretched. Unlike insects, bats have heavy, muscular wings with hand-like bendable joints. The study suggests that they use their flexibility to compensate for that mass.

"Wing mass is important and it's normally not considered in flight," said Attila Bergou, who along with Daniel Riskin is co-lead author of the study that appears April 11 in the Proceedings of the Royal Society B. "Typically you analyze lift, drag, and you don't talk about the energy of moving the wings."

The findings not only help explain why bats and some birds tuck in their wings on the upstroke, but could also help inform human designers of small flapping vehicles. The team's research is funded by the U.S. Air Force Office of Sponsored Research.

"If you have a vehicle that has heavy wings, it would become energetically beneficial to fold the wings on the upstroke," said Sharon Swartz, professor of ecology and evolutionary biology at Brown. She and Kenneth Breuer, professor of engineering, are senior authors on the paper.

The physics of flexed flapping

The team originally set out to study something different: how wing motions vary among bats along a wide continuum of sizes. They published those results in 2010 in the Journal of Experimental Biology, but as they analyzed the data further, they started to consider the intriguing pattern of the inward flex on the upstroke.

That curiosity gave them a new perspective on their 1,000 frames-per-second videos of 27 bats performing five trials each aloft in a flight corridor or wind tunnel. They tracked markers on the bats, who hailed from six species, and measured how frequently the wings flapped, how far up and down they flapped, and the distribution of mass within them as they moved. They measured the mass by cutting the wing of a bat that had died into 32 pieces and weighing them.

The team fed the data in to a calculus-rich model that allowed them to determine what the inertial energy costs of flapping were and what they would have been if the wings were kept outstretched.

Bergou, a physicisist, said he was surprised that the energy savings was so great, especially because the calculations also showed that the bats have to spend a lot of energy — 44 percent of the total inertial cost of flapping — to fold their wings inward and then back outward ahead of the downstroke.

"Retracting your wings has an inertial cost," Bergou said. "It is significant but it is outweighed by the savings on the up and down stroke."

The conventional wisdom has always been that bats drew their wings in on the upstroke to reduce drag in the air, and although the team did not measure that, they acknowledge that aerodynamics plays the bigger role in the overall energy budget of flying. But the newly measured inertial savings of drawing in the wings on the upstroke seems too significant to be an accident.

"It really is an open question whether natural selection is so intense on the design and movement patterns of bats that it reaches details of how bats fold their wings," Swartz said. "This certainly suggests that this is not a random movement pattern and that it is likely that there is an energetic benefit to animals doing this."

David Orenstein | EurekAlert!
Further information:
http://www.brown.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>