Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why bats, rats and cats store different amounts of fat

20.01.2012
Animals differ in the amount of fat they carry around depending on their species, status and sex. However, the causes of much of this variation have been a mystery. The Bristol study shows that many differences can be understood by considering the strategies animals employ to avoid two causes of death: starvation and being killed by predators.

These causes of death often exert opposite pressures on animals, for example, storing lots of fat helps animals survive periods without food but also slows their running and so makes getting caught by a predator more likely. Animals can be stronger to compensate, but the energetic costs of extra muscle mean that the animal would starve quicker during a food shortage.

Led by Dr Andrew Higginson of Bristol's School of Biological Sciences, the researchers used mathematical models to explore how much muscle and fat animals should have in their body to give themselves the best chance of survival. They showed that an important consideration was how much carrying fat increases the energetic costs of movement. The models revealed that the size of this cost influenced whether larger animals should have more fat than smaller animals, or vice versa.

Dr Higginson said: "Our results explain differences between different families of mammal. For example, larger bats carry proportionally less fat than small bats but larger carnivores carry more fat than small carnivores. Among rodents, it's the medium-sized species that carry around the most fat! These differences agree with the models predictions if you consider the costs of carrying fat for these three groups. Bats fly and so have high costs of carrying extra weight, whilst carnivores spend much of their time resting and so will use less energy than busy scurrying rodents."

The work, published in The American Naturalist, also shows that much of the variation between animals in their amounts of fat and muscle can be explained by differences between the sexes, how much animals have to fight to get food, and the climate in which they live.

The researchers plan to put the theory to the test by looking in more detail at the amounts of fat stored by different animals. If their theory is correct, much of the mystery in how species and sexes differ in their amount of fat will have been solved.

Hannah Johnson | EurekAlert!
Further information:
http://www.bristol.ac.uk

Further reports about: energetic costs extra muscle food shortage medium-sized species

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>