Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bat Researchers Discover New Species on St. Vincent Island

26.05.2011
At first glance, the bat captured in St. Vincent looked like a common type found in South America.

But after closer inspection, Texas Tech University biologists discovered a new species found only on the Caribbean island and whose origins probably trace back to a dramatic marooning after glaciers receded and sea levels rose.

The discovery was made by Peter Larsen, a post-doctoral research associate in the Department of Biological Sciences, and Lizette Siles, graduate student of zoology. It was featured in the online version of the peer-reviewed journal, Mammalian Biology.

Researchers from the University of Scranton, South Dakota State University and the University of Nebraska also contributed to the discovery.

As a way of honoring St. Vincent’s inhabitants, the researchers said this new species of the genus Micronycteris has been named after the Garifuna people – the blended culture of Carib, Arawak and West African peoples that trace their ancestry back to St. Vincent.

Larsen said he went to St. Vincent in 2005-2006 on two expeditions with a team of researchers seeking to categorize bat diversity on the island.

“We didn’t know at the time when we caught these particular specimens that it was a new species,” he said. “We thought it was a species that had been described already in South America. A year or so went by, and I happened to look at this species that we had collected and compared it to what we thought it was – a species from Trinidad. But the St. Vincent bat was huge comparatively speaking.”

Larsen gave the sample to Siles, who is an expert in Neotropical bat morphology. After looking at the teeth and the skull, she determined the bat from St. Vincent was distinct from its closest South American relatives. Though the mainland relatives are smaller, often small animals grow larger and large animals grow smaller when introduced onto an island.

Siles said that though the island effects on the body size may have played a role in this example, the species on St. Vincent is genetically distinct and has species-level differences in body type, which is how the team determined that the bat was a new species to science.

“Its size was the first clue,” she said. “It’s a very large bat in body and skull size compared to its mainland counterparts. Also it differs in specific skull and teeth characteristics. The lower incisors are a lot larger than they are wide. That’s completely different than the one he thought it was. At the base of the skull where the ear is, there are supposed to be two wells. Those wells are very shallow. On the mainland species, they’re very deep.”

The new species came about fairly recently, the researchers said, probably sometime in the last 600,000 to 1 million years. Prior to this, the bat’s common ancestor from the South American mainland managed to island-hop across to St. Vincent when sea levels were much lower.

The marooning likely occurred during the Pleistocene, after melting glaciers caused rising sea levels that isolated the St. Vincent population.

Siles said the bat is mainly an insect eater that will roost in caves, trees and even logs on the forest floor.

However, the animal has an uncommon method for catching prey, she said.

“They can actually pick their insect prey off the surface of rocks and leaves,” Siles said. “Not all insectivores can do that, because most insectivores catch their prey on the fly. Their big ears, wide wings and membranes between the rear feet and tail allow them to maneuver better.”

To see the report, visit this site.

Find Texas Tech news, experts and story ideas at www.media.ttu.edu and on Twitter @TexasTechMedia.

CONTACT: Peter Larsen, post-doctoral research associate, Department of Biological Sciences, Texas Tech University, (806) 742-3722 ext. 283 or peter.larsen@ttu.edu; Lizette Siles, graduate student of zoology, Natural Science Research Laboratory, Texas Tech University, liz_siles@yahoo.com.

John Davis | Newswise Science News
Further information:
http://www.ttu.edu

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>