Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Barshop Institute, global team sequences DNA of naked mole rat

San Antonio colony of long-lived rodents contributes to study published in Nature

Scientists have sequenced the complete genome of the naked mole rat, a pivotal step to understanding the animal's extraordinarily long life and good health. A colony of more than 2,000 naked mole rats at The University of Texas Health Science Center at San Antonio contributed to the findings, published today in the journal Nature.

"If we understand which genes are different or are expressed differently in naked mole rats — compared to short-lived mice that clearly have poor defenses against aging and cancer — we might find clues as to why the naked mole rat is able to extend both health span and longevity, as well as fight cancer, and this information could be directly relevant and translatable to humans," said Rochelle Buffenstein, Ph.D., professor of physiology at the Barshop Institute for Longevity and Aging Studies, part of the UT Health Science Center San Antonio. Dr. Buffenstein worked on the study with Thomas Park, Ph.D., of the University of Chicago; Vadim Gladyshev, Ph.D., of Harvard Medical School; the Beijing Genomics Institute; and other collaborators.

Rodent Methuselahs

The mouse-sized naked mole rat is the longest-lived rodent known, surviving up to 31 years in captivity. This is much longer than its laboratory rodent relatives, and the naked mole rat maintains good health and reproductive potential well into its third decade. Naked mole rats live underground in large family groups, like termites and bees, with only a single breeding female. These social rodents are extremely tolerant of life in low oxygen and high levels of carbon dioxide.

The naked mole rat's capacity to resist cancer and maintain protein integrity in the face of oxidative damage makes it an ideal animal model for aging and biomedical research, Dr. Buffenstein said. "Deciphering the animal's genetic blueprint is an important step to unlocking the keys to the naked mole rat's extraordinary longevity," she said. "This study reveals many of the genetic secrets to their extraordinary longevity, cancer resistance and pain tolerance, and their ability to survive in a low-oxygen environment. Indeed, having this animal's genetic blueprint is a treasure trove for many areas of biology and medicine because the genome will now be available to scientists everywhere to explore in their favored research area."

Barshop Institute Director Arlan Richardson, Ph.D., said: "The data in this Nature paper are very important for aging research because they give us the first glimpse into how the naked mole rat lives 10 times longer than its distant cousins, the mouse and rat."

Unusual appearance

Naked mole rats resemble pink, saber-toothed "sausages." Previous studies have yielded important insights into how the naked mole rat is able to rewire its brain (a process called neural plasticity), tolerate low oxygen and low body temperatures, and show cancer-free good health well into old age.

"Understanding their genomic footprint may reveal how they are able to maintain the integrity of their proteins and DNA far better than other animals do in old age, as well as how they mitigate the translation of oxidative damage into age-related declines and disease," Dr. Buffenstein said.

For current news from the UT Health Science Center San Antonio, please visit our news release website or follow us on Twitter @uthscsa.

About the UT Health Science Center San Antonio

The University of Texas Health Science Center at San Antonio, one of the country's leading health sciences universities, ranks in the top 3 percent of all institutions worldwide receiving federal funding. Research and other sponsored program activity totaled $228 million in fiscal year 2010. The university's schools of medicine, nursing, dentistry, health professions and graduate biomedical sciences have produced approximately 26,000 graduates. The $744 million operating budget supports eight campuses in San Antonio, Laredo, Harlingen and Edinburg. For more information on the many ways "We make lives better®," visit

Will Sansom | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>