Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Balancing act

12.01.2009
A recently discovered protein works behind the scenes to confer much-needed stabilization to an essential developmental pathway

Early in development, embryos transition from being simple spheres of cells into more structured forms in which the foundations of body patterning—such as distinct dorsal (back) and ventral (front) sides—have been established.

Dorsal–ventral patterning is primarily established by BMP signaling factors, which exhibit a gradient of activity along the length of the embryo: elevated BMP activity induces ventral development, while reduced BMP signaling induces dorsality. Reduction in BMP activity is mediated by a structure known as the Spemann organizer, which secretes factors like Chordin, which inactivates BMP and drives dorsalization.

However, BMP also represses Chordin expression, creating a seemingly fragile regulatory situation in which transient upregulation of Chordin could trigger a chain reaction of uncontrolled Chordin upregulation, with catastrophic results for body patterning.

This isn’t the case; in fact, this process is surprisingly robust. Yoshiki Sasai of the RIKEN Center for Developmental Biology in Kobe, suspected that additional failsafe mechanisms must exist to stabilize Chordin–BMP regulation, and decided to investigate the involvement of a protein recently discovered by his team, ONT1, which they thought might play a role in body patterning (1).

ONT1 is produced and secreted by cells in the dorsal region of the embryo, where it appears to directly regulate Chordin function, and Sasai’s team found that frog embryos with reduced ONT1 activity are far more vulnerable to excessive dorsalization in the presence of abnormally elevated Chordin levels. “We were really surprised to see how drastically the stability collapsed after knocking down ONT1 function,” he says.

They determined that ONT1 not only interacts directly with Chordin, but also binds to an enzyme known to degrade Chordin, and came to the surprising conclusion that ONT1 acts as a bridge that links the two proteins and thereby expedites destruction of the dorsalization signal. “There are a number of examples of intracellular scaffolds,” says Sasai, “but ONT1 is a rare example of a secreted scaffold for enzymes.”

There is another recently identified pathway for the regulation of dorsal–ventral patterning, mediated by ADMP, a protein that reduces Chordin levels by activating BMP receptors, and ONT1 and ADMP appear to regulate parallel but independent pathways for ensuring robust control of dorsalization in the embryo.

The researchers now hope to delve deeper into this more complex model of organizer regulation. “One important approach will be to establish a mathematical model for this integrated view of organizer function,” says Sasai, “particularly to explain these phenomena in a spatial and real-time fashion.”

Reference

1. Inomata, H., Haraguchi, T. & Sasai, Y. Robust stability of the embryonic axial pattern requires a secreted scaffold for Chordin degradation. Cell 134, 854–865 (2008).

The corresponding author for this highlight is based at the RIKEN Laboratory for Organogenesis and Neurogenesis

Saeko Okada | ResearchSEA
Further information:
http://www.rikenresearch.riken.jp/research/621/
http://www.researchsea.com

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>