Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Balancing act

12.01.2009
A recently discovered protein works behind the scenes to confer much-needed stabilization to an essential developmental pathway

Early in development, embryos transition from being simple spheres of cells into more structured forms in which the foundations of body patterning—such as distinct dorsal (back) and ventral (front) sides—have been established.

Dorsal–ventral patterning is primarily established by BMP signaling factors, which exhibit a gradient of activity along the length of the embryo: elevated BMP activity induces ventral development, while reduced BMP signaling induces dorsality. Reduction in BMP activity is mediated by a structure known as the Spemann organizer, which secretes factors like Chordin, which inactivates BMP and drives dorsalization.

However, BMP also represses Chordin expression, creating a seemingly fragile regulatory situation in which transient upregulation of Chordin could trigger a chain reaction of uncontrolled Chordin upregulation, with catastrophic results for body patterning.

This isn’t the case; in fact, this process is surprisingly robust. Yoshiki Sasai of the RIKEN Center for Developmental Biology in Kobe, suspected that additional failsafe mechanisms must exist to stabilize Chordin–BMP regulation, and decided to investigate the involvement of a protein recently discovered by his team, ONT1, which they thought might play a role in body patterning (1).

ONT1 is produced and secreted by cells in the dorsal region of the embryo, where it appears to directly regulate Chordin function, and Sasai’s team found that frog embryos with reduced ONT1 activity are far more vulnerable to excessive dorsalization in the presence of abnormally elevated Chordin levels. “We were really surprised to see how drastically the stability collapsed after knocking down ONT1 function,” he says.

They determined that ONT1 not only interacts directly with Chordin, but also binds to an enzyme known to degrade Chordin, and came to the surprising conclusion that ONT1 acts as a bridge that links the two proteins and thereby expedites destruction of the dorsalization signal. “There are a number of examples of intracellular scaffolds,” says Sasai, “but ONT1 is a rare example of a secreted scaffold for enzymes.”

There is another recently identified pathway for the regulation of dorsal–ventral patterning, mediated by ADMP, a protein that reduces Chordin levels by activating BMP receptors, and ONT1 and ADMP appear to regulate parallel but independent pathways for ensuring robust control of dorsalization in the embryo.

The researchers now hope to delve deeper into this more complex model of organizer regulation. “One important approach will be to establish a mathematical model for this integrated view of organizer function,” says Sasai, “particularly to explain these phenomena in a spatial and real-time fashion.”

Reference

1. Inomata, H., Haraguchi, T. & Sasai, Y. Robust stability of the embryonic axial pattern requires a secreted scaffold for Chordin degradation. Cell 134, 854–865 (2008).

The corresponding author for this highlight is based at the RIKEN Laboratory for Organogenesis and Neurogenesis

Saeko Okada | ResearchSEA
Further information:
http://www.rikenresearch.riken.jp/research/621/
http://www.researchsea.com

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>