Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why there are bad learners: EEG activity predicts learning success

13.02.2013
Research team discovers: brain does not process sensory information sufficiently

The reason why some people are worse at learning than others has been revealed by a research team from Berlin, Bochum, and Leipzig, operating within the framework of the Germany-wide network “Bernstein Focus State Dependencies of Learning”.

They have discovered that the main problem is not that learning processes are inefficient per se, but that the brain insufficiently processes the information to be learned. The scientists trained the subjects’ sense of touch to be more sensitive. In subjects who responded well to the training, the EEG revealed characteristic changes in brain activity, more specifically in the alpha waves.

These alpha waves show, among other things, how effectively the brain exploits the sensory information needed for learning. “An exciting question now is to what extent the alpha activity can be deliberately influenced with biofeedback”, says PD Dr. Hubert Dinse from the Neural Plasticity Lab of the Ruhr-Universität Bochum. “This could have enormous implications for therapy after brain injury or, quite generally, for the understanding of learning processes.” The research team from the Ruhr-Universität, the Humboldt Universität zu Berlin, Charité – Universitätsmedizin Berlin and the Max Planck Institute (MPI) for Human Cognitive and Brain Sciences reported their findings in the Journal of Neuroscience.

Learning without attention: passive training of the sense of touch

How well we learn depends on genetic aspects, the individual brain anatomy, and, not least, on attention. “In recent years we have established a procedure with which we trigger learning processes in people that do not require attention”, says Hubert Dinse. The researchers were, therefore, able to exclude attention as a factor. They repeatedly stimulated the participants’ sense of touch for 30 minutes by electrically stimulating the skin of the hand. Before and after this passive training, they tested the so-called “two-point discrimination threshold”, a measure of the sensitivity of touch. For this, they applied gentle pressure to the hand with two needles and determined the smallest distance between the needles at which the patient still perceived them as separate stimuli. On average, the passive training improved the discrimination threshold by twelve percent—but not in all of the 26 participants. Using EEG, the team studied why some people learned better than others.

Imaging the brain state using EEG: the alpha waves are decisive

The cooperation partners from Berlin and Leipzig, PD Dr. Petra Ritter, Dr. Frank Freyer, and Dr. Robert Becker recorded the subjects’ spontaneous EEG before and during passive training. They then identified the components of the brain activity related to improvement in the discrimination test. The alpha activity was decisive, i.e., the brain activity was in the frequency range 8 to 12 hertz. The higher the alpha activity before the passive training, the better the people learned. In addition, the more the alpha activity decreased during passive training, the more easily they learned. These effects occurred in the somatosensory cortex, that is, where the sense of touch is located in the brain.

Researchers seek new methods for therapy

“How the alpha rhythm manages to affect learning is something we investigate with computer models”, says PD Dr. Petra Ritter, Head of the Working Group “Brain Modes” at the MPI Leipzig and the Berlin Charité. “Only when we understand the complex information processing in the brain, can we intervene specifically in the processes to help disorders”, adds Petra Ritter. New therapies are the aim of the cooperation network, which Ritter coordinates, the international “Virtual Brain” project, which her team collaborates on, and the “Neural Plasticity Lab”, chaired by Hubert Dinse at the RUB.

Learning is dependent on access to sensory information

A high level of alpha activity counts as a marker of the readiness of the brain to exploit new incoming information. Conversely, a strong decrease of alpha activity during sensory stimulation counts as an indicator that the brain processes stimuli particularly efficiently. The results, therefore, suggest that perception-based learning is highly dependent on how accessible the sensory information is. The alpha activity, as a marker of constantly changing brain states, modulates this accessibility.

Funding

The Federal Ministry of Education and Research (Bernstein Focus Learning, “State Dependencies of Learning”), the James S. McDonnel Foundation, the Max-Planck Society (Minerva Programme) and the German Research Foundation (CRC 874, “Integration and Representation of Sensory Processes”) funded the project.

Bibliographic record

F. Freyer, R. Becker, H.R. Dinse, P. Ritter (2013): State-dependent perceptual learning, Journal of Neuroscience, doi: 10.1523/JNEUROSCI.4039-12.2013

Further information

PD Dr. Hubert Dinse, Neural Plasticity Lab, Institute for Neural Computation at the Ruhr-Universität, 44780 Bochum, Germany, tel. +49/234/32-25565, e-mail: hubert.dinse@rub.de

PD Dr. Petra Ritter, MPI for Human Cognitive and Brain Sciences, Leipzig; Charité Universitätsmedizin, Berlin, Germany, tel. +49/341/9940-2220, e-mail: petra.ritter@charite.de

Click for more

Neural Plasticity Lab at the RUB
http://www.neuralplasticitylab.de/index.aspx?culture=EN

Previous press release on passive learning without attention
http://aktuell.ruhr-uni-bochum.de/pm2011/pm00136.html.en

Editor: Dr. Julia Weiler

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>