Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why there are bad learners: EEG activity predicts learning success

13.02.2013
Research team discovers: brain does not process sensory information sufficiently

The reason why some people are worse at learning than others has been revealed by a research team from Berlin, Bochum, and Leipzig, operating within the framework of the Germany-wide network “Bernstein Focus State Dependencies of Learning”.

They have discovered that the main problem is not that learning processes are inefficient per se, but that the brain insufficiently processes the information to be learned. The scientists trained the subjects’ sense of touch to be more sensitive. In subjects who responded well to the training, the EEG revealed characteristic changes in brain activity, more specifically in the alpha waves.

These alpha waves show, among other things, how effectively the brain exploits the sensory information needed for learning. “An exciting question now is to what extent the alpha activity can be deliberately influenced with biofeedback”, says PD Dr. Hubert Dinse from the Neural Plasticity Lab of the Ruhr-Universität Bochum. “This could have enormous implications for therapy after brain injury or, quite generally, for the understanding of learning processes.” The research team from the Ruhr-Universität, the Humboldt Universität zu Berlin, Charité – Universitätsmedizin Berlin and the Max Planck Institute (MPI) for Human Cognitive and Brain Sciences reported their findings in the Journal of Neuroscience.

Learning without attention: passive training of the sense of touch

How well we learn depends on genetic aspects, the individual brain anatomy, and, not least, on attention. “In recent years we have established a procedure with which we trigger learning processes in people that do not require attention”, says Hubert Dinse. The researchers were, therefore, able to exclude attention as a factor. They repeatedly stimulated the participants’ sense of touch for 30 minutes by electrically stimulating the skin of the hand. Before and after this passive training, they tested the so-called “two-point discrimination threshold”, a measure of the sensitivity of touch. For this, they applied gentle pressure to the hand with two needles and determined the smallest distance between the needles at which the patient still perceived them as separate stimuli. On average, the passive training improved the discrimination threshold by twelve percent—but not in all of the 26 participants. Using EEG, the team studied why some people learned better than others.

Imaging the brain state using EEG: the alpha waves are decisive

The cooperation partners from Berlin and Leipzig, PD Dr. Petra Ritter, Dr. Frank Freyer, and Dr. Robert Becker recorded the subjects’ spontaneous EEG before and during passive training. They then identified the components of the brain activity related to improvement in the discrimination test. The alpha activity was decisive, i.e., the brain activity was in the frequency range 8 to 12 hertz. The higher the alpha activity before the passive training, the better the people learned. In addition, the more the alpha activity decreased during passive training, the more easily they learned. These effects occurred in the somatosensory cortex, that is, where the sense of touch is located in the brain.

Researchers seek new methods for therapy

“How the alpha rhythm manages to affect learning is something we investigate with computer models”, says PD Dr. Petra Ritter, Head of the Working Group “Brain Modes” at the MPI Leipzig and the Berlin Charité. “Only when we understand the complex information processing in the brain, can we intervene specifically in the processes to help disorders”, adds Petra Ritter. New therapies are the aim of the cooperation network, which Ritter coordinates, the international “Virtual Brain” project, which her team collaborates on, and the “Neural Plasticity Lab”, chaired by Hubert Dinse at the RUB.

Learning is dependent on access to sensory information

A high level of alpha activity counts as a marker of the readiness of the brain to exploit new incoming information. Conversely, a strong decrease of alpha activity during sensory stimulation counts as an indicator that the brain processes stimuli particularly efficiently. The results, therefore, suggest that perception-based learning is highly dependent on how accessible the sensory information is. The alpha activity, as a marker of constantly changing brain states, modulates this accessibility.

Funding

The Federal Ministry of Education and Research (Bernstein Focus Learning, “State Dependencies of Learning”), the James S. McDonnel Foundation, the Max-Planck Society (Minerva Programme) and the German Research Foundation (CRC 874, “Integration and Representation of Sensory Processes”) funded the project.

Bibliographic record

F. Freyer, R. Becker, H.R. Dinse, P. Ritter (2013): State-dependent perceptual learning, Journal of Neuroscience, doi: 10.1523/JNEUROSCI.4039-12.2013

Further information

PD Dr. Hubert Dinse, Neural Plasticity Lab, Institute for Neural Computation at the Ruhr-Universität, 44780 Bochum, Germany, tel. +49/234/32-25565, e-mail: hubert.dinse@rub.de

PD Dr. Petra Ritter, MPI for Human Cognitive and Brain Sciences, Leipzig; Charité Universitätsmedizin, Berlin, Germany, tel. +49/341/9940-2220, e-mail: petra.ritter@charite.de

Click for more

Neural Plasticity Lab at the RUB
http://www.neuralplasticitylab.de/index.aspx?culture=EN

Previous press release on passive learning without attention
http://aktuell.ruhr-uni-bochum.de/pm2011/pm00136.html.en

Editor: Dr. Julia Weiler

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de

More articles from Life Sciences:

nachricht Molecular evolution: How the building blocks of life may form in space
26.04.2018 | American Institute of Physics

nachricht Multifunctional bacterial microswimmer able to deliver cargo and destroy itself
26.04.2018 | Max-Planck-Institut für Intelligente Systeme

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>