Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacterium causing US catfish deaths has Asian roots

03.06.2014

A bacterium causing an epidemic among catfish farms in the southeastern United States is closely related to organisms found in diseased grass carp in China, according to researchers at Auburn University in Alabama and three other institutions. The study, published this week in mBio®, the online open-access journal of the American Society for Microbiology, suggests that the virulent U.S. fish epidemic emerged from an Asian source.

Since 2009, catfish farming in Alabama, Mississippi and Arkansas has been seriously impacted by an emerging strain of Aeromonas hydrophila, which causes Aeromonas septicemia in catfish. A serious infection that can cause death in as little as 12 hours, Aeromonas septicemia's clinical signs include skin lesions and blood loss.

Normally A. hydrophila, which can be found in both fresh and brackish water, only affects fish that are stressed or injured. But the newer strain has affected even apparently healthy fish with no obvious signs of duress, says senior study author Mark Liles, PhD, an associate professor in the Department of Biological Sciences at Auburn.

When initial tests of the diseased fish showed A. hydrophila was responsible, says Liles, scientists "didn't believe it at first, because the signs didn't match the more typical opportunistic infections in stressed fish that we associate with A. hydrophila." To date, disease outbreaks have been responsible for an estimated loss of more than $12 million in catfish aquaculture operations in the southeastern United States, he says.

Liles and colleagues studied the molecular epidemiology of the epidemic-causing A. hydrophila to try to trace its evolution. They compared samples of the bacteria to 264 known Aeromonas strains in an international database. Only one virulent strain came close to matching the one sampled from Alabama: ZC1, isolated from a diseased grass carp in China's Guangdong Province. ZC1 was isolated from fish that had experienced an epidemic outbreak atypical of Aeromonas infections.

Researchers also identified a less aggressive related A. hydrophila strain called S04-690, taken in 2004 from a diseased catfish in a commercial aquaculture pond in Mississippi. That strain caused a serious Aeromonas septicemia outbreak that killed thousands of catfish but did not result in an epidemic on neighboring farms.

Next, the scientists evaluated the evolutionary relationships of additional Chinese carp bacteria samples from epidemics in the Hubei Province in China. This revealed that all of the Chinese carp bacteria samples, including ZC1, group together with the recent U.S. epidemic samples of bacteria in catfish, suggesting that a common ancestor is responsible for the virulent A. hydrophila strains causing fish disease in both China and the United States.

S04-690, from the Mississippi fish, also was found to be in the same group, related to both the U.S. catfish and Asian carp bacteria. However, it was genetically distinct from the other two strains. By contrast, A. hydrophila strains that do not cause epidemics are more heterogeneous.

Additional experiments found that isolated bacteria from diseased catfish in America and diseased carp in China shared alternate forms of 10 key 'housekeeping' genes required for basic cellular function.

It's not clear how the bacterium was introduced in America, Liles says. It could be from importing Asian carp to America for aquatic weed control, or from transporting ornamental fish or contaminated processed seafood products from Asia. The spread of disease among farms also is not fully understood but could result from birds that move from pond to pond eating catfish, or from harvesting equipment that may be insufficiently sanitized between uses.

Liles and other researchers are investigating means to control the spread of illness, including developing vaccines against the bacteria, and using medicated feed and/or probiotics. Meanwhile, he says, U.S. farmed catfish are safe to eat and pose no disease threat to humans due to strict standards regarding harvesting and processing of sick animals.

###

The study was funded by Auburn University and the Alabama Agricultural Experiment Station.

mBio® is an open access online journal published by the American Society for Microbiology to make microbiology research broadly accessible. The focus of the journal is on rapid publication of cutting-edge research spanning the entire spectrum of microbiology and related fields. It can be found online at http://mbio.asm.org.

The American Society for Microbiology is the largest single life science society, composed of over 39,000 scientists and health professionals. ASM's mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

Jim Sliwa | Eurek Alert!
Further information:
http://www.asmusa.org

Further reports about: Aeromonas bacteria catfish epidemic infections septicemia strains

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>