Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Bacterial Toxins Against Resistant Insect Pests

19.10.2011
Scientists from the USA, Mexico, China, and Germany have developed Bt toxins for the management of resistance in European corn borer and other crop pests.

Toxins from Bacillus thuringiensis bacteria (Bt toxins) are used in organic and conventional farming to manage pest insects. Sprayed as pesticides or produced in genetically modified plants, Bt toxins, used in pest control since 1938, minimize herbivory in crops, such as vegetables, maize or cotton.


Tobacco budworm (Heliothis virescens)
Melanie Marr, MPI for Chemical Ecology


Cotton bollworm (Helicoverpa armigera)
Suyog Kuwar, MPI for Chemical Ecology

Since 1996, Bt producing transgenic crops have been grown, which successfully control pests like the European corn borer, the tobacco budworm, the Western corn rootworm, and the cotton bollworm. Over the years, Bt resistant insects have emerged in organic and conventional farming. Scientists have therefore modified the molecular structure of two Bt toxins, Cry1Ab and Cry1Ac, in order to overcome resistance. The novel toxins, Cry1AbMod and Cry1AcMod, are effective against five resistant insect species, such as the diamondback moth, the cotton bollworm, and the European corn borer. Cry1AbMod and Cry1AcMod can be used alone or in combination with other Bt toxins for plant protection. (NATURE Biotechnology, advance online publication, DOI: 10.1038/nbt.1988)

New insights into the mechanisms of action of Cry1Ab and Cry1Ac served as the basis for development of the modified Bt toxins. The primary question had been why the Cry proteins, which naturally occur in B. thuringiensis, have such a resoundingly toxic effect on many different herbivorous insects. Researchers had previously found a protein in the caterpillars’ midgut that binds Bt toxins – with fateful consequences for the insects, because binding the toxins causes the gut cells to die. This protein is one of the many types of cadherin proteins in the cell. Binding to cadherin also causes the removal of a structural element of the Cry protein called an alpha helix, which triggers cell death; this is probably due to a Cry-mediated formation of pores in the cell membranes.

Scientists in the groups of David G. Heckel at Clemson University, South Carolina, USA, and at the University of Melbourne, Australia, then discovered that mutated cadherins cause Bt resistance. If cadherin mutations or the absence of cadherin were the causal factors of Bt resistance in certain pest insects, it should be possible to break this resistance by means of Bt toxins that did not have the crucial alpha helix and could therefore be effective without cadherin. Mexican researchers led by Mario Soberón and Alejandra Bravo developed these novel toxins, called Cry1AbMod and Cry1AcMod.

“When we studied the new Bt toxins in 12 resistant and non-resistant strains of five major pest species, the results of our experiments were encouraging but surprising. The new toxins are also effective against strains whose Bt resistance is not based on cadherin mutations,” says David G. Heckel, director of the Department of Entomology at the Max Planck Institute for Chemical Ecology in Jena, Germany, and co-author of the study. Especially interesting was the finding that the new toxins were specifically effective against a super-resistant strain of tobacco budworm carrying both the cadherin mutation and another mutation affecting an ABC transporter which was discovered by the Max Planck researchers last year.

Particularly striking was the effect of Cry1AbMod and Cry1AcMod on a Bt resistant corn borer and a resistant diamondback moth strain that was 350 times stronger compared to that of the natural toxins. On the other hand, the new toxins had only a weak effect on some strains whose Bt resistance is due to a mutated cadherin.

If both novel Bt toxins prove to be useful in agriculture, they can be used in combination with different Bt toxins to guarantee a reliable effect on herbivorous pests. Biologists also agree that measures to reduce the occurrence of resistant insect pests must be strictly adhered to and that farmers should be informed in detail. Such measures would mainly include the use of different pesticides, crop rotation, and simultaneous sowing of non-Bt plants in fields, where transgenic Bt varieties are grown. [JWK, AO]

Original Publication:
Tabashnik, B. E., Huang, F., Ghimire, M. N., Leonard, B. R., Siegfried, B. D., Rangasamy, M., Yang, Y., Wu, Y., Gahan, L. J., Heckel, D. G., Bravo, A., Soberón, M. (2011). Efficacy of genetically modified Bt toxins against insects with different genetic mechanisms of resistance. NATURE Biotechnology. doi: 10.1038/nbt.1988.
Further Information:
David G. Heckel, MPI for Chemical Ecology, Jena
Tel.: 03641 - 57 1500, heckel@ice.mpg.de
Picture Material:
Angela Overmeyer M.A., Tel. 03641 - 57 2110, overmeyer@ice.mpg.de
or Download via http://www.ice.mpg.de/ext/735.html

Dr. Jan-Wolfhard Kellmann | Max-Planck-Institut
Further information:
http://www.ice.mpg.de
http://www.ice.mpg.de/ext/735.html

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Fraunhofer Researchers Develop High-Pressure Sensors for Extreme Temperature

28.06.2017 | Power and Electrical Engineering

Zeolite catalysts pave the road to decentral chemical processes Confined space increases reactivity

28.06.2017 | Life Sciences

Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy

28.06.2017 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>