Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacterial communication encourages chronic, resistant ear infections

07.07.2010
Ear infections caused by more than one species of bacteria could be more persistent and antibiotic-resistant because one pathogen may be communicating with the other, encouraging it to bolster its defenses.

Interrupting or removing that communication could be key to curing these infections. Researchers from Wake Forest University Baptist Medical Center publish their findings today in mBio™, the online open-access journal of the American Society for Microbiology.

"In this study we show that communication between bacterial species promotes bacterial persistence and resistance to antibiotics, which are important considerations in the diagnosis, preventions and treatment of otitis media (OM)," says W. Edward Swords, an associate professor of microbiology and immunology and senior author of the study. Chelsie Armbruster, a Ph.D. student working in Swords' lab, co-authored the study.

OM is one of the most common childhood infections and is the leading reason for pediatric office visits and new antibiotic prescriptions to children. OM infections often persist for long periods of time and are often resistant to antibiotics. These chronic and recurrent cases of OM involve the persistence of the bacteria within a biofilm community, a state in which they are highly resistant to both natural clearance by the immune system and antibiotic treatment.

Epidemiological data indicate that the majority of chronic OM infections are polymicrobial in nature, meaning they are caused by more than one species of bacteria. Haemophilus influenzae and Moraxella catarrhalis are frequently found together in samples obtained from patients with chronic and recurrent OM.

"Interestingly, a recent study found M. catarrhalis to be more frequently associated with polymicrobial OM infections than from single-species OM infections. This suggests that the presence of other bacterial pathogens may impact the persistence of M. catarrhalis or the severity of disease caused by this species," says Swords.

In examining the dynamics between these two bacteria in culture and animal models, Swords and his colleagues discovered the H. influenzae secreted autoinducer-2 (AI-2), a chemical involved in an interbacterial method of communication known as quorum sensing, that promoted increased biofilm formation and antibiotic resistance in M. catarrhalis.

"We conclude that H. influenzae promotes M. catarrhalis persistence within polymicrobial infection biofilms via inter-species quorum signaling. AI-2 may therefore represent an ideal target for disruption of chronic polymicrobial infections," says Swords. "Moreover, these results strongly imply that successful vaccination against the unencapsulated H. influenzae strains that cause airway infections may also significantly impact chronic M. catarrhalis disease by removing a reservoir for the AI-2 signal that promotes M. catarrhalis persistence within biofilms."

The study was sponsored by a grant from the National Institutes of Health.

mBio™ is a new open access online journal published by the American Society for Microbiology to make microbiology research broadly accessible. The focus of the journal is on rapid publication of cutting-edge research spanning the entire spectrum of microbiology and related fields. It can be found online at http://mbio.asm.org.

Garth Hogan | EurekAlert!
Further information:
http://www.asmusa.org

More articles from Life Sciences:

nachricht Embryonic development: How do limbs develop from cells?
18.05.2018 | Humboldt-Universität zu Berlin

nachricht Reading histone modifications, an oncoprotein is modified in return
18.05.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>