Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria possible cause of preterm births

28.01.2011
The type of bacteria that colonize the placenta during pregnancy could be associated with preterm birth and other developmental problems in newborns according to research published in the current issue of the online journal mBio®.

"The fetal inflammatory response appears to contribute to the onset of preterm labor, fetal injury and complications, underlying lifetime health challenges facing these children," say the researchers from Harvard Medical School, Brigham and Women's Hospital and Children's Hospital of Boston. "Our data suggest that placental colonization by specific groups of organisms can increase or decrease the risk of a systemic inflammatory condition."

Preterm birth occurs in nearly a half million pregnancies in the United States alone. Despite improved care, preterm and especially extremely low-gestational-age newborns continue to be at a considerably higher risk of morbidity, mortality and developmental problems. Much of this risk is attributable to imbalanced inflammatory responses of the fetus and newborn.

The systemic fetal inflammatory response to intrauterine exposures, especially intrauterine infections, is regarded as an important contributor to the onset and often lifelong consequences of preterm labor, fetal injury and early organ damage. Approximately half of all placentas delivered before the second trimester and 41% of those delivered by Caesarean section harbor microorganisms detectable by culture techniques.

In order to better understand what role, these microorganisms could play in the extremely preterm inflammatory response the researchers analyzed protein biomarkers in dry blood spots obtained from 527 newborns delivered by Caesarean section and cultured and identified the bacteria from their respective placentas.

Placentas colonized primarily by microorganisms commonly associated with the condition know as bacterial vaginosis (BV) were found to be associated with elevated levels of proinflammatory protein in newborns. In contrast, colonization by Lactobacillus species of bacteria (often found in decreased concentrations during BV) were associated with lower levels of proinflammatory proteins.

"Our study supports the concept that the placental colonization with vaginal microorganisms can induce a systemic inflammatory response in the fetus and newborn and that the dominating molecular feature of this response can be dependent on the type of bacteria," says Andrew Onderdonk of Harvard Medical School and Brigham and Women's Hospital, one of the authors of the study. "Our data suggest that the targeting of placental colonization by specific drugs or probiotics during early pregnancy may hold promise for preventing not only preterm birth but also the devastating and far-reaching inflammatory consequences in premature newborns."

mBio® is a new open access online journal published by the American Society for Microbiology to make microbiology research broadly accessible. The focus of the journal is on rapid publication of cutting-edge research spanning the entire spectrum of microbiology and related fields. It can be found online at http://mbio.asm.org.

The journal article can be found online at http://mbio.asm.org/content/2/1/e00280-10

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>