Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria possible cause of preterm births

28.01.2011
The type of bacteria that colonize the placenta during pregnancy could be associated with preterm birth and other developmental problems in newborns according to research published in the current issue of the online journal mBio®.

"The fetal inflammatory response appears to contribute to the onset of preterm labor, fetal injury and complications, underlying lifetime health challenges facing these children," say the researchers from Harvard Medical School, Brigham and Women's Hospital and Children's Hospital of Boston. "Our data suggest that placental colonization by specific groups of organisms can increase or decrease the risk of a systemic inflammatory condition."

Preterm birth occurs in nearly a half million pregnancies in the United States alone. Despite improved care, preterm and especially extremely low-gestational-age newborns continue to be at a considerably higher risk of morbidity, mortality and developmental problems. Much of this risk is attributable to imbalanced inflammatory responses of the fetus and newborn.

The systemic fetal inflammatory response to intrauterine exposures, especially intrauterine infections, is regarded as an important contributor to the onset and often lifelong consequences of preterm labor, fetal injury and early organ damage. Approximately half of all placentas delivered before the second trimester and 41% of those delivered by Caesarean section harbor microorganisms detectable by culture techniques.

In order to better understand what role, these microorganisms could play in the extremely preterm inflammatory response the researchers analyzed protein biomarkers in dry blood spots obtained from 527 newborns delivered by Caesarean section and cultured and identified the bacteria from their respective placentas.

Placentas colonized primarily by microorganisms commonly associated with the condition know as bacterial vaginosis (BV) were found to be associated with elevated levels of proinflammatory protein in newborns. In contrast, colonization by Lactobacillus species of bacteria (often found in decreased concentrations during BV) were associated with lower levels of proinflammatory proteins.

"Our study supports the concept that the placental colonization with vaginal microorganisms can induce a systemic inflammatory response in the fetus and newborn and that the dominating molecular feature of this response can be dependent on the type of bacteria," says Andrew Onderdonk of Harvard Medical School and Brigham and Women's Hospital, one of the authors of the study. "Our data suggest that the targeting of placental colonization by specific drugs or probiotics during early pregnancy may hold promise for preventing not only preterm birth but also the devastating and far-reaching inflammatory consequences in premature newborns."

mBio® is a new open access online journal published by the American Society for Microbiology to make microbiology research broadly accessible. The focus of the journal is on rapid publication of cutting-edge research spanning the entire spectrum of microbiology and related fields. It can be found online at http://mbio.asm.org.

The journal article can be found online at http://mbio.asm.org/content/2/1/e00280-10

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org

More articles from Life Sciences:

nachricht New type of photosynthesis discovered
17.06.2018 | Imperial College London

nachricht New ID pictures of conducting polymers discover a surprise ABBA fan
17.06.2018 | University of Warwick

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>