Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Autopilot Guides Proteins in Brain

22.04.2009
Proteins go everywhere in the cell and do all sorts of work, but a fundamental question has eluded biologists: How do the proteins know where to go?

“There’s no little man sitting there, putting the protein in the right place,” said Don Arnold, a molecular and computational biologist at USC College.

“Proteins have to have in them encoded information that tells them where to go in the cell.”

In a study appearing online this week in Nature Neuroscience, Arnold and collaborators solve the mystery for key proteins in the brain.

Neurons have separate structures for receiving signals (dendrites) and for sending them (axons). The electrical properties of each depend on different proteins. But the proteins travel in bubbles, or vesicles, powered by motors known as kinesins that travel along tiny molecular paths.

Even though the paths point to both axons and dendrites, dendritic proteins end up in dendrites, and axonal proteins go to the axons. How?

Arnold’s group discovered a crude but effective sorting mechanism. At first, kinesins blindly carry both types of proteins towards the axon.

However, dendritic proteins enable the vesicles transporting them to bind to a second motor, known as myosin, that literally walks them back into the dendrite.

This filter ensures that only axonal proteins make it into the axon. The others are caught by the second motor and diverted to the dendrite.

“This mechanism fishes these things out of the axon,” Arnold said.

Once in the dendrite, the proteins either land in a place where they can do their electrical work or they move back towards the axon, only to be fished out again.

On its face, the process is inefficient, Arnold said, “but it is very effective.”

The discovery may enable finer control over neurons for basic research or for treatment of neurological disorders. Potentially, scientists could target only dendrites or axons in a neuron so as to study its outgoing or incoming impulses.

In addition to these potential applications, the study is notable for its contribution to the understanding of the brain and of protein transport in general.

“It’s a very basic question, something people have been wondering about for a long time,” Arnold said.

The co-authors on the study were first author Tommy Lewis, a graduate student in the molecular and computational biology graduate program at USC, as well as Tianyi Mao and Karel Svoboda from the Howard Hughes Medical Institute at the Janelia Farm Research Campus.

The National Institutes of Health and the Howard Hughes Medical Institute funded the research.

Carl Marziali | EurekAlert!
Further information:
http://www.usc.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>