Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How authentic is your pomegranate juice?

30.11.2010
Cynthia Larive, a chemist at UC Riverside, is beginning to find out

You pick up a bottle of pomegranate juice at the store because you've learned that, although it costs more than most juices, it is replete with antioxidants that bring health benefits. But wait: Is the juice you've purchased really pomegranate juice? Or is the product label you have carefully read promising more than it delivers?

A chemist at the University of California, Riverside is determined to find out. Cynthia Larive, a professor of chemistry, is playing detective by applying chemical tests to juice products sold as pomegranate juice or pomegranate juice blends, in order to authenticate their contents.

"We are measuring levels of unique compounds in pomegranate juice and are able to use this 'molecular fingerprint' to discriminate against adulterated juice products," said Larive, whose research on pomegranate juice is being funded by a nearly $50,000 one-year grant from Pom Wonderful, a company that grows and markets pomegranates and pomegranate-based products.

In the lab, Larive and her graduate student Daniel Orr are measuring levels of different biochemicals, called small-molecule metabolites, present in juices. To make their measurements, the researchers are using nuclear magnetic resonance spectroscopy, liquid chromatography-mass spectroscopy, and gas chromatography-mass spectroscopy – three methods that together allow them to measure amino acids, organic acids, sugars, pomegranate pigment compounds, as well as health-producing antioxidant molecules that are unique to pomegranate juice.

"We have received a collection of pomegranate samples from around the world, as well as commercial juices such as beet, grape, apple and pear – to name just a few," Larive said. "We're looking at whether or not our molecular fingerprint method can be used to identify products claiming to contain pomegranate juice when they don't, and products claiming to be pomegranate juice when they are not."

According to Larive, the three methods her lab used on pomegranate juices can be used to authenticate other products such as wine and olive oil by checking whether their metabolite profiles match what the products are claimed by their manufacturers to be.

"We are really curious to see how far we can push the technology," she said. "This research dovetails nicely with some of the research we're already doing at UC Riverside on hypoxia in plants with Julia Bailey-Serres. Where our experiments are concerned, juices, wine and olive oil are simply different sets of plant compounds. So it should be relatively easy to extrapolate the work we're doing on pomegranate juices to these products."

Larive explained that by examining the levels of different compounds in, say, pomegranate juice, a statistical picture – or chemical profile – emerges that describes the juice. Then, depending on how much an unknown product's profile differs from the pomegranate juice profile, her lab can determine whether that unknown product is pomegranate juice or contains only some or none of it.

Larive received her B.S. degree in chemistry in 1980 from South Dakota State University. She completed her Ph.D. degree in analytical chemistry in 1992 at UCR. In 1992 she joined the faculty of the University of Kansas, and in 2005 returned to UCR as a professor of chemistry. Her research interests are mainly in the area of bioanalytical chemistry.

The University of California, Riverside (www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 20,500 students. The campus will open a medical school in 2012 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Graduate Center. The campus has an annual statewide economic impact of more than $1 billion.

A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. To learn more, call (951) UCR-NEWS.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>