Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How authentic is your pomegranate juice?

30.11.2010
Cynthia Larive, a chemist at UC Riverside, is beginning to find out

You pick up a bottle of pomegranate juice at the store because you've learned that, although it costs more than most juices, it is replete with antioxidants that bring health benefits. But wait: Is the juice you've purchased really pomegranate juice? Or is the product label you have carefully read promising more than it delivers?

A chemist at the University of California, Riverside is determined to find out. Cynthia Larive, a professor of chemistry, is playing detective by applying chemical tests to juice products sold as pomegranate juice or pomegranate juice blends, in order to authenticate their contents.

"We are measuring levels of unique compounds in pomegranate juice and are able to use this 'molecular fingerprint' to discriminate against adulterated juice products," said Larive, whose research on pomegranate juice is being funded by a nearly $50,000 one-year grant from Pom Wonderful, a company that grows and markets pomegranates and pomegranate-based products.

In the lab, Larive and her graduate student Daniel Orr are measuring levels of different biochemicals, called small-molecule metabolites, present in juices. To make their measurements, the researchers are using nuclear magnetic resonance spectroscopy, liquid chromatography-mass spectroscopy, and gas chromatography-mass spectroscopy – three methods that together allow them to measure amino acids, organic acids, sugars, pomegranate pigment compounds, as well as health-producing antioxidant molecules that are unique to pomegranate juice.

"We have received a collection of pomegranate samples from around the world, as well as commercial juices such as beet, grape, apple and pear – to name just a few," Larive said. "We're looking at whether or not our molecular fingerprint method can be used to identify products claiming to contain pomegranate juice when they don't, and products claiming to be pomegranate juice when they are not."

According to Larive, the three methods her lab used on pomegranate juices can be used to authenticate other products such as wine and olive oil by checking whether their metabolite profiles match what the products are claimed by their manufacturers to be.

"We are really curious to see how far we can push the technology," she said. "This research dovetails nicely with some of the research we're already doing at UC Riverside on hypoxia in plants with Julia Bailey-Serres. Where our experiments are concerned, juices, wine and olive oil are simply different sets of plant compounds. So it should be relatively easy to extrapolate the work we're doing on pomegranate juices to these products."

Larive explained that by examining the levels of different compounds in, say, pomegranate juice, a statistical picture – or chemical profile – emerges that describes the juice. Then, depending on how much an unknown product's profile differs from the pomegranate juice profile, her lab can determine whether that unknown product is pomegranate juice or contains only some or none of it.

Larive received her B.S. degree in chemistry in 1980 from South Dakota State University. She completed her Ph.D. degree in analytical chemistry in 1992 at UCR. In 1992 she joined the faculty of the University of Kansas, and in 2005 returned to UCR as a professor of chemistry. Her research interests are mainly in the area of bioanalytical chemistry.

The University of California, Riverside (www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 20,500 students. The campus will open a medical school in 2012 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Graduate Center. The campus has an annual statewide economic impact of more than $1 billion.

A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. To learn more, call (951) UCR-NEWS.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>