Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Attacking Cancer Cells with Hydrogel Nanoparticles

17.02.2010
One of the difficulties of fighting cancer is that drugs often hit other non-cancerous cells, causing patients to get sick. But what if researchers could sneak cancer-fighting particles into just the cancer cells?

Researchers at the Georgia Institute of Technology and the Ovarian Cancer Institute are working on doing just that. In the online journal BMC Cancer they detail a method that uses hydrogels - less than 100 nanometers in size - to sneak a particular type of small interfering RNA(siRNA) into cancer cells. Once in the cell the siRNA turns on the programmed cell death the body uses to kill mutated cells and help traditional chemotherapy do it’s job.

Many cancers are characterized by an over abundance of epidermal growth factor receptors (EGFR). When the EGFR level in a cell is elevated it tells the cell to replicate at a rapid rate. It also turns down apoptosis, or programmed cell death.

“With our technique we’re inhibiting EGFR’s growth, with small interfering RNA. And by inhibiting it’s growth, we’re increasing the cells’s apoptotic function. If we hit the cell with chemotherapy at the same time, we should be able to kill the cancer cells more effectively,” said John McDonald, professor at the School of Biology at Georgia Tech and chief research scientist at the Ovarian Cancer Institute.

Small interfering RNA is good at shutting down EGFR production, but once inside the cell siRNA has a limited life span. Keeping it protected inside the hydrogel nanoparticles allows them to get into the cancer cell safely and acts as a protective barrier around them. The hydrogel releases only a small amount of siRNA at a time, ensuring that while some are out in the cancer cell doing their job, reinforcements are held safely inside the nanoparticle until it’s time to do their job.

“It’s like a Trojan horse,” said L. Andrew Lyon, professor in the School of Chemistry and Biochemistry at Georgia Tech. “We’ve decorated the surface of these hydrogels with a ligand that tricks the cancer cell into taking it up. Once inside, the particles have a slow release profile that leaks out the siRNA over a timescale of days, allowing it to have a therapeutic effect.”

Cells use the messenger RNA (mRNA) to generate proteins, which help to keep the cell growing. Once the siRNA enters the cell, it binds to the mRNA and recruits proteins that attack the siRNA-mRNA complex. But the cancer cell's not finished; it keeps generating proteins, so without a continuous supply of siRNA, the cell recovers. Using the hydrogel to slowly release the siRNA allows it to keep up a sustained attack so that it can continue to interrupt the production of proteins.

“We’ve shown that you can get knock down out to a few days time frame, which could present a clinical window to come in and do multiple treatments in a combination chemotherapy approach,” said Lyon.

“The fact that this system is releasing the siRNA slowly, without giving the cell time to immediately recover, gives us much better efficiency at killing the cancer cells with chemotherapy,” added McDonald.

Previous techniques have involved using antibodies to knock down the proteins.

“But oftentimes, a mutation may arise in the targeted gene such that the antibody will no longer have the effect it once did, thereby increasing the chance for recurrence,” said McDonald.

The team used hydrogels because they’re non-toxic, have a relatively slow release rate, and can survive in the body long enough to reach their target.

“It’s a well-defined architecture that you’re using the intrinsic porosity of that material to load things into, and since our particles are about 98 percent water by volume, there’s plenty of internal volume in which to load things,” said Lyon.

Currently, the tests have been shown to work in vitro, but the team will be initiating tests in vivo shortly.

David Terraso | Newswise Science News
Further information:
http://www.gatech.edu

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>