Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Attacking Cancer Cells with Hydrogel Nanoparticles

17.02.2010
One of the difficulties of fighting cancer is that drugs often hit other non-cancerous cells, causing patients to get sick. But what if researchers could sneak cancer-fighting particles into just the cancer cells?

Researchers at the Georgia Institute of Technology and the Ovarian Cancer Institute are working on doing just that. In the online journal BMC Cancer they detail a method that uses hydrogels - less than 100 nanometers in size - to sneak a particular type of small interfering RNA(siRNA) into cancer cells. Once in the cell the siRNA turns on the programmed cell death the body uses to kill mutated cells and help traditional chemotherapy do it’s job.

Many cancers are characterized by an over abundance of epidermal growth factor receptors (EGFR). When the EGFR level in a cell is elevated it tells the cell to replicate at a rapid rate. It also turns down apoptosis, or programmed cell death.

“With our technique we’re inhibiting EGFR’s growth, with small interfering RNA. And by inhibiting it’s growth, we’re increasing the cells’s apoptotic function. If we hit the cell with chemotherapy at the same time, we should be able to kill the cancer cells more effectively,” said John McDonald, professor at the School of Biology at Georgia Tech and chief research scientist at the Ovarian Cancer Institute.

Small interfering RNA is good at shutting down EGFR production, but once inside the cell siRNA has a limited life span. Keeping it protected inside the hydrogel nanoparticles allows them to get into the cancer cell safely and acts as a protective barrier around them. The hydrogel releases only a small amount of siRNA at a time, ensuring that while some are out in the cancer cell doing their job, reinforcements are held safely inside the nanoparticle until it’s time to do their job.

“It’s like a Trojan horse,” said L. Andrew Lyon, professor in the School of Chemistry and Biochemistry at Georgia Tech. “We’ve decorated the surface of these hydrogels with a ligand that tricks the cancer cell into taking it up. Once inside, the particles have a slow release profile that leaks out the siRNA over a timescale of days, allowing it to have a therapeutic effect.”

Cells use the messenger RNA (mRNA) to generate proteins, which help to keep the cell growing. Once the siRNA enters the cell, it binds to the mRNA and recruits proteins that attack the siRNA-mRNA complex. But the cancer cell's not finished; it keeps generating proteins, so without a continuous supply of siRNA, the cell recovers. Using the hydrogel to slowly release the siRNA allows it to keep up a sustained attack so that it can continue to interrupt the production of proteins.

“We’ve shown that you can get knock down out to a few days time frame, which could present a clinical window to come in and do multiple treatments in a combination chemotherapy approach,” said Lyon.

“The fact that this system is releasing the siRNA slowly, without giving the cell time to immediately recover, gives us much better efficiency at killing the cancer cells with chemotherapy,” added McDonald.

Previous techniques have involved using antibodies to knock down the proteins.

“But oftentimes, a mutation may arise in the targeted gene such that the antibody will no longer have the effect it once did, thereby increasing the chance for recurrence,” said McDonald.

The team used hydrogels because they’re non-toxic, have a relatively slow release rate, and can survive in the body long enough to reach their target.

“It’s a well-defined architecture that you’re using the intrinsic porosity of that material to load things into, and since our particles are about 98 percent water by volume, there’s plenty of internal volume in which to load things,” said Lyon.

Currently, the tests have been shown to work in vitro, but the team will be initiating tests in vivo shortly.

David Terraso | Newswise Science News
Further information:
http://www.gatech.edu

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>