Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Atomic-resolution views suggest function of enzyme that regulates light-detecting signals in eye

09.10.2008
Enzyme undergoes large conformational change after small messenger molecule binds

An atomic-resolution view of an enzyme found only in the eye has given researchers at the University of Washington (UW) clues about how this enzyme, essential to vision, is activated. The enzyme, phosphodiesterase 6 (PDE6), is central to the way light entering the retina is converted into a cascade of signals to the brain.

This particular form of the enzyme comes from the cone photoreceptors of the retina and has not been well-researched, in contrast to its rod form. Rods are involved in night vision and motion sensation; the cones are responsible for color sensitivity, visual acuity, daylight vision, and adjustment to bright light.

The section of the enzyme molecule that most interests the researchers is the so-called GAF A domain. A small messenger molecule, cGMP, binds to the GAF A domain to regulate the enzyme.

"The domain binds to this small molecule with extremely high sensitivity," said UW biochemist Clemens Heikaus, who along with Sergio E. Martinez, now a research associate at Rutgers, carried out the study. "From our structure, we can infer why it prefers cGMP over other messenger molecules." He added that the domain is quick in recognizing and responding to the messenger molecule to create an instantaneous flow of information to the brain.

Using X-ray crystallography and nuclear magnetic resonance, the researchers discovered that the enzyme undergoes major structural changes upon binding of the cGMP molecule.

Before binding occurs, the GAF domain is like an outstretched palm with the fingers wiggling, Heikaus said. After the cGMP molecule binds, the GAF domain closes and becomes less dynamic. In this state it looks more like a closed fist.

Further analysis of the consequences of this conformational change may lead to a better understanding of how the photoreceptor PDE helps regulate the path of signals that enable us to see, as well as provide general information on proteins with GAF domains.

"The addition of a simple, small molecule to the GAF domain affects the entire PDE enzyme," Heikaus said. Researchers think the binding to the domain may act as a switch that turns on the enzyme.

The research findings were published in the Sept. 19 Journal of Biological Chemistry. The article was selected as a Paper of the Week. The journal cover featured a striking image of the iris of Heikaus' eye, photographed by UW ophthalmology imaging supervisor Brad Clifton. Superimposed in the center of the pupil was a three-dimensional structure of the GAF domain.

In humans, GAF-containing proteins are rare. In plants and bacteria, GAF domains are widespread and are specialized for binding a variety of molecules. Some of these plant and bacteria GAF domains are important in detecting light, but they do so through a mechanism that is completely different from vision in vertebrate animals.

GAF domains emerged more than 3 billion years ago in early forms of life, and remained as animals and humans evolved, a phenomenon evolutionary biologists call conservation. Human GAF domains have similar protein folds, and a similar way of binding signal-triggering molecules inside a "pocket," as do GAF domains in more primitive creatures.

Humans have only a few kinds of GAF domains, all of which are in enzymes within the PDE family. They perform important functions not only in vision but also in hearts, lungs, and blood vessels. PDE5, an enzyme closely related to PDE6, is the therapeutic target for sildenafil, known by the trade name Viagra. In some men, this drug also inhibits PDE6 in the eyes, causing a temporary change in color vision.

More knowledge of the basic mechanisms of PDEs in vision may lead someday to better drug treatment for loss of eyesight from damaged retinas, such as occurs in night blindness and retinitis pigmentosa.

Leila Gray | EurekAlert!
Further information:
http://www.washington.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>