Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Atomic-resolution views suggest function of enzyme that regulates light-detecting signals in eye

Enzyme undergoes large conformational change after small messenger molecule binds

An atomic-resolution view of an enzyme found only in the eye has given researchers at the University of Washington (UW) clues about how this enzyme, essential to vision, is activated. The enzyme, phosphodiesterase 6 (PDE6), is central to the way light entering the retina is converted into a cascade of signals to the brain.

This particular form of the enzyme comes from the cone photoreceptors of the retina and has not been well-researched, in contrast to its rod form. Rods are involved in night vision and motion sensation; the cones are responsible for color sensitivity, visual acuity, daylight vision, and adjustment to bright light.

The section of the enzyme molecule that most interests the researchers is the so-called GAF A domain. A small messenger molecule, cGMP, binds to the GAF A domain to regulate the enzyme.

"The domain binds to this small molecule with extremely high sensitivity," said UW biochemist Clemens Heikaus, who along with Sergio E. Martinez, now a research associate at Rutgers, carried out the study. "From our structure, we can infer why it prefers cGMP over other messenger molecules." He added that the domain is quick in recognizing and responding to the messenger molecule to create an instantaneous flow of information to the brain.

Using X-ray crystallography and nuclear magnetic resonance, the researchers discovered that the enzyme undergoes major structural changes upon binding of the cGMP molecule.

Before binding occurs, the GAF domain is like an outstretched palm with the fingers wiggling, Heikaus said. After the cGMP molecule binds, the GAF domain closes and becomes less dynamic. In this state it looks more like a closed fist.

Further analysis of the consequences of this conformational change may lead to a better understanding of how the photoreceptor PDE helps regulate the path of signals that enable us to see, as well as provide general information on proteins with GAF domains.

"The addition of a simple, small molecule to the GAF domain affects the entire PDE enzyme," Heikaus said. Researchers think the binding to the domain may act as a switch that turns on the enzyme.

The research findings were published in the Sept. 19 Journal of Biological Chemistry. The article was selected as a Paper of the Week. The journal cover featured a striking image of the iris of Heikaus' eye, photographed by UW ophthalmology imaging supervisor Brad Clifton. Superimposed in the center of the pupil was a three-dimensional structure of the GAF domain.

In humans, GAF-containing proteins are rare. In plants and bacteria, GAF domains are widespread and are specialized for binding a variety of molecules. Some of these plant and bacteria GAF domains are important in detecting light, but they do so through a mechanism that is completely different from vision in vertebrate animals.

GAF domains emerged more than 3 billion years ago in early forms of life, and remained as animals and humans evolved, a phenomenon evolutionary biologists call conservation. Human GAF domains have similar protein folds, and a similar way of binding signal-triggering molecules inside a "pocket," as do GAF domains in more primitive creatures.

Humans have only a few kinds of GAF domains, all of which are in enzymes within the PDE family. They perform important functions not only in vision but also in hearts, lungs, and blood vessels. PDE5, an enzyme closely related to PDE6, is the therapeutic target for sildenafil, known by the trade name Viagra. In some men, this drug also inhibits PDE6 in the eyes, causing a temporary change in color vision.

More knowledge of the basic mechanisms of PDEs in vision may lead someday to better drug treatment for loss of eyesight from damaged retinas, such as occurs in night blindness and retinitis pigmentosa.

Leila Gray | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Bioluminescent sensor causes brain cells to glow in the dark
28.10.2016 | Vanderbilt University

nachricht Activation of 2 genes linked to development of atherosclerosis
28.10.2016 | Brigham and Women's Hospital

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>