Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Asterix's Roman foes -- Researchers have a better idea of how cancer cells move and grow

In a number of biological processes, including in the formation of metastases, cells communicate with each other in order to move as a group

Researchers at the University of Montreal's Institute for Research in Immunology and Cancer (IRIC) have discovered a new mechanism that allows some cells in our body to move together, in some ways like the tortoise formation used by Roman soldiers depicted in the Asterix series.

Researchers at the University of Montreal's Institute for Research in Immunology and Cancer (IRIC) have discovered a new mechanism that allows some cells in our body to move together, in some ways like the tortoise formation used by Roman soldiers depicted in the Asterix series.

Credit: Université de Montréal

Collective cell migration is an essential part of our body's growth and defense system, but it is also used by cancerous cells to disseminate efficiently in the body. "We have found a key mechanism that allows cells to coordinate their movement as a group and we believe that this mechanism is used by malignant cells in a number of cancers, including some types of breast, prostate and skin cancers" explained lead researcher Gregory Emery. Roman soldiers formed the tortoise, or testudo formation, by coming closely together and aligning their shields side-by-side in order to defend themselves as they broke their enemy lines.

"As for the Romans, if some cancerous cells are migrating efficiently, it is because their movements are tightly coordinated. To stop their progression, we have first to understand how they coordinate. Then, we will aim at blocking this coordination in cancer cells to abrogate cancer progression."

IRIC's scientists and their colleagues from the Johns Hopkins School of Medicine in Baltimore, USA studied the movement of the "border-cells" in the ovaries of fruit flies, a biological process that is well understood by scientists and that they can reproduce easily. Researchers often use these kinds of cells as a model to get insight into metastatic cell migration – the process by which malignant cells leave the original tumor– as they can be easily manipulated and observed. Researchers look at how chemicals known as proteins that our body produces influence what goes on in cells. In this study for instance, the researchers from IRIC were able to aim a laser with sufficient precision to activate or inactivate an engineered protein in a single living cell, and observe directly the consequences of these alterations.

They found that a protein known as Rab11 enables individual cells to sense what the others are doing and organize into a tight structure to move together. Rab11 achieves this by regulating another protein, called Moesin which is involved in controlling the shape and rigidity of cells. Reducing the level of Moesin reduces the cohesion of the cluster and impedes cell movement. "Here, we have identified a mechanism by which the cells share information to coordinate movements. By disrupting this mechanism, we are able to block their migration." Dr Emery explained.
Although the findings were in a specific kind of cells in an insect model, the proteins involved, Rab11 and Moesin, have already been shown to play a role in some human cancers. "This indicates that the new regulatory mechanism we identified in fly cells is most likely also important in human cancers," Dr. Emery said. "Our work will allow us to identify molecular targets to disrupt collective cell migration and hopefully to fight metastasis formation" he concludes.

About this study:
Gregory Emery and his co-authors published "Rab11 regulates cell-cell communication during collective cell movements" in Nature Cell Biology online on February 3, 2013. The research received funding from the Canadian Institutes of Health Research (CIHR), the Fonds de recherche du Québec – Santé (FRQ-S). IRIC is supported in part by the Canadian Center of Excellence in Commercialization and Research (CECR), the Canada Foundation for Innovation (CFI) and the FRQ-S. Dr. Emery holds a Canada Research Chair (Tier 2) in Vesicular Trafficking and Cell Signalling and is a professor at the University of Montreal's Department of Pathology and Cell Biology. The University of Montreal is officially known as Université de Montréal.

William Raillant-Clark | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>