Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arsenic hyperaccumulating ferns: How do they survive?

09.06.2010
Arsenic is toxic to most forms of life, and occurs naturally in soil and ground water in many regions of the world. Chronic exposure to arsenic has been linked to lung, bladder and kidney cancer, and thus there are strict limits on allowable levels or arsenic in drinking water.

Chemically similar to phosphorus, arsenic forms arsenate (AsO43-), which closely resembles phosphate (PO43-). Arsenate interferes with many phosphate-requiring metabolic reactions, including synthesis of adenosine triphosphate (ATP), a ubiquitous and essential source of cellular energy. Thus, exposure to even low levels of arsenic can be extremely toxic.

In well-aerated soils, arsenic exists mainly as arsenate, which is taken up by plant roots using a phosphate transporter protein. Plant tissues rapidly reduce arsenate to arsenite (AsO33-), which is transported to the aerial portions of the plant. In aquatic environments or water-logged soils, arsenic exists primarily as arsenite. Whereas rice grains can accumulate up to 60 ìg/g arsenic, the fern Pteris vittata (see figure) can hyperaccumulate arsenic to levels 1000-fold greater than this. A team of researchers led by David Salt and Jo Ann Banks of Purdue University have recently isolated a gene encoding an arsenite transporter protein. This transporter allows these ferns to sequester arsenic in the vacuole, a cellular storage compartment isolated from the cytoplasm by the vacuolar membrane.

In research recently published in The Plant Cell and performed primarily by graduate student Emily Indriolo (now a researcher at the University of Toronto), these scientists describe how they used an arsenic-sensitive strain of yeast to isolate and characterize a gene encoding the P. vittata arsenite transporter. Yeast cells are arsenic-resistant because their plasma membrane contains an arsenite effluxer protein that is encoded by the Arsenical Compound Resistance 3 (ACR3) gene. The researchers introduced a library of P. vittata genes into an arsenic-sensitive acr3 mutant yeast strain and isolated a gene that restored arsenic resistance to this mutant. The protein encoded by this gene was then demonstrated to be very similar to the ACR3 protein of yeast in both structure and function.

Sequence analysis showed that this fern protein contains 10 putative transmembrane domains, suggesting a cellular membrane location. Using an antibody that specifically recognizes the ACR3 protein, they showed that ACR3 is found in the membranes of vacuoles, but not in the plasma membrane or in endoplasmic reticulum membranes. This suggests a mechanism for arsenic tolerance in P. vittata tissues: arsenite that enters the cell is transported by ACR3 into the vacuolar compartment, where it is spatially isolated from the cell cytoplasm, the site of many of the cell's arsenic-sensitive metabolic reactions.

Furthermore, the researchers showed that ACR3 gene expression in P. vittata is induced more than 30-fold in the presence of arsenite. To verify that ACR3 is required for arsenic tolerance, the ACR3 gene was silenced using an inhibitory mRNA. In these silenced plants, ACR3 expression was not induced by arsenite, and arsenic significantly reduced the growth rate of these ACR3-deficient plants relative to unsilenced plants.

Sequence analysis showed that, although this gene is found in a wide range of organisms including bacteria, fungi, mosses and gymnosperms, it is absent in angiosperms. By studying the occurrence and function of ACR3 in various plants, including hyperaccumulating and nonaccumulating ferns, the authors hope to provide additional insights into mechanisms of arsenic transport, tolerance, and accumulation. In addition to potential benefits for human health, this research will hopefully lead to strategies for phytoremediation of arsenic-contaminated soil and water.

This work was supported by the National Science Foundation and the National Institutes of Health with technical assistance from the Purdue Ionomics Center.

Gregory Bertoni | EurekAlert!
Further information:
http://www.aspb.org
http://www.plantcell.org/cgi/content/abstract/tpc.109.069773v1

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>