Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arsenic hyperaccumulating ferns: How do they survive?

09.06.2010
Arsenic is toxic to most forms of life, and occurs naturally in soil and ground water in many regions of the world. Chronic exposure to arsenic has been linked to lung, bladder and kidney cancer, and thus there are strict limits on allowable levels or arsenic in drinking water.

Chemically similar to phosphorus, arsenic forms arsenate (AsO43-), which closely resembles phosphate (PO43-). Arsenate interferes with many phosphate-requiring metabolic reactions, including synthesis of adenosine triphosphate (ATP), a ubiquitous and essential source of cellular energy. Thus, exposure to even low levels of arsenic can be extremely toxic.

In well-aerated soils, arsenic exists mainly as arsenate, which is taken up by plant roots using a phosphate transporter protein. Plant tissues rapidly reduce arsenate to arsenite (AsO33-), which is transported to the aerial portions of the plant. In aquatic environments or water-logged soils, arsenic exists primarily as arsenite. Whereas rice grains can accumulate up to 60 ìg/g arsenic, the fern Pteris vittata (see figure) can hyperaccumulate arsenic to levels 1000-fold greater than this. A team of researchers led by David Salt and Jo Ann Banks of Purdue University have recently isolated a gene encoding an arsenite transporter protein. This transporter allows these ferns to sequester arsenic in the vacuole, a cellular storage compartment isolated from the cytoplasm by the vacuolar membrane.

In research recently published in The Plant Cell and performed primarily by graduate student Emily Indriolo (now a researcher at the University of Toronto), these scientists describe how they used an arsenic-sensitive strain of yeast to isolate and characterize a gene encoding the P. vittata arsenite transporter. Yeast cells are arsenic-resistant because their plasma membrane contains an arsenite effluxer protein that is encoded by the Arsenical Compound Resistance 3 (ACR3) gene. The researchers introduced a library of P. vittata genes into an arsenic-sensitive acr3 mutant yeast strain and isolated a gene that restored arsenic resistance to this mutant. The protein encoded by this gene was then demonstrated to be very similar to the ACR3 protein of yeast in both structure and function.

Sequence analysis showed that this fern protein contains 10 putative transmembrane domains, suggesting a cellular membrane location. Using an antibody that specifically recognizes the ACR3 protein, they showed that ACR3 is found in the membranes of vacuoles, but not in the plasma membrane or in endoplasmic reticulum membranes. This suggests a mechanism for arsenic tolerance in P. vittata tissues: arsenite that enters the cell is transported by ACR3 into the vacuolar compartment, where it is spatially isolated from the cell cytoplasm, the site of many of the cell's arsenic-sensitive metabolic reactions.

Furthermore, the researchers showed that ACR3 gene expression in P. vittata is induced more than 30-fold in the presence of arsenite. To verify that ACR3 is required for arsenic tolerance, the ACR3 gene was silenced using an inhibitory mRNA. In these silenced plants, ACR3 expression was not induced by arsenite, and arsenic significantly reduced the growth rate of these ACR3-deficient plants relative to unsilenced plants.

Sequence analysis showed that, although this gene is found in a wide range of organisms including bacteria, fungi, mosses and gymnosperms, it is absent in angiosperms. By studying the occurrence and function of ACR3 in various plants, including hyperaccumulating and nonaccumulating ferns, the authors hope to provide additional insights into mechanisms of arsenic transport, tolerance, and accumulation. In addition to potential benefits for human health, this research will hopefully lead to strategies for phytoremediation of arsenic-contaminated soil and water.

This work was supported by the National Science Foundation and the National Institutes of Health with technical assistance from the Purdue Ionomics Center.

Gregory Bertoni | EurekAlert!
Further information:
http://www.aspb.org
http://www.plantcell.org/cgi/content/abstract/tpc.109.069773v1

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>