Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

APS Podcast Updates Research on Elephant Communication

22.09.2009
Caitlin O’Connell-Rodwell’s insight that elephants ‘talk’ and ‘listen’ to vocalizations that they send through the ground grew from long hours of observation and experimentation, as well as her own in-depth knowledge of insects that communicate seismically.

In Episode 25 of the APS podcast, Life Lines, the Stanford University professor updates her research from the APS journal Physiology, explaining how elephant vocalizations travel through the ground for great distances, and how other elephants can understand them, just as they understand acoustic sound, which travels through the air. The study in Physiology can be found by clicking here or by following the full link at the end of the release.

Dr. O’Connell-Rodwell is the author of The Elephant’s Secret Sense. You can see videos of some of the elephant communication experiments she describes in the podcast on her Utopia Scientific site. The links to the videos are on this page: http://utopiascientific.org/Research/mushara.html.

Discovers seismic communication
Early in her research, Dr. O’Connell-Rodwell noticed behavior that indicates elephants are listening to acoustic (airborne) sounds by putting their ears out and orienting toward the sound’s source.

At other times, she also noticed a more puzzling behavior: Several elephants would freeze simultaneously, sometimes in mid-stride, and would press their front feet into the ground. They might also roll a foot forward so that only their toes touched the ground. At other times, they would lift a front leg. The behavior reminded her of the behavior she saw in insects that communicate seismically.

She began a series of experiments that eventually found that:

• Low-frequency elephant vocalizations, which are below the threshold of human hearing, travel through the ground in the same waveform as they do in the air. The ground vocalization can travel faster or more slowly than acoustic sound, depending on soil conditions, but has the potential of travelling further as there is no outer limit to how far sounds can travel through the earth.

• When she played a recorded elephant vocalization through the ground only (not through the air), other elephants detected the vocalization.

• Elephants understood the ground-borne vocalizations. For example, they responded appropriately to an alarm call from another elephant by assuming their defensive posture of bunching and freezing. They also responded only to alarm calls of elephants living in the area rather than those made from elephants elsewhere.

Further research revealed that there are two ways elephants ‘hear’ sound waves traveling through the ground:

Somatosensory pathway. Elephants feel the sound wave through their feet and trunks using the somatosensory pathway. Their feet and trunks have a large number of pacinian corpuscles -- cells that detect vibrations. The cells help transmit these vibrations to the brain.

Bone conduction pathway. Elephants detect ground-borne sound waves through their toenails. The vibration travels up the bone and into the middle ear where it vibrates the middle ear bones, just as an acoustic sound would.

Elephants also have anatomical adaptations to help them ‘hear’ these ground-borne vocalizations:

• They have an enlarged malleus, a middle ear bone that plays an important role in hearing. Animals that communicate seismically often have an enlarged malleus as it also facilitates bone conducted detection of vibrations.

• Elephants can close their middle ear canal, forming a closed acoustic tube which enhances bone conduction and blocks out acoustic sound, helping the elephant focus on the vibration pathway.

• They have an acoustically designed foot, with a thick fat pad that perhaps helps in the transmission or conduction of vibrations.

You can find the podcast interview at http://lifelines.libsyn.com/index.php?post_id=524100 and an article on the research in the journal Physiology: http://physiologyonline.physiology.org/cgi/search?sortspec=relevance&author1=O%27Connell-Rodwell&fulltext=&pubdate_year=&volume=&firstpage=.

For more information, please contact Christine Guilfoy at cguilfoy@the-aps.org or at 301.634.7253.

Physiology is the study of how molecules, cells, tissues and organs function to create health or disease. The American Physiological Society (APS) has been an integral part of this scientific discovery process since it was established in 1887.

Christine Guilfoy | Newswise Science News
Further information:
http://www.the-aps.org

Further reports about: APS Bird Communication Elephant Plattform Physiology elephants middle ear sound wave

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>