Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

APS Podcast Updates Research on Elephant Communication

22.09.2009
Caitlin O’Connell-Rodwell’s insight that elephants ‘talk’ and ‘listen’ to vocalizations that they send through the ground grew from long hours of observation and experimentation, as well as her own in-depth knowledge of insects that communicate seismically.

In Episode 25 of the APS podcast, Life Lines, the Stanford University professor updates her research from the APS journal Physiology, explaining how elephant vocalizations travel through the ground for great distances, and how other elephants can understand them, just as they understand acoustic sound, which travels through the air. The study in Physiology can be found by clicking here or by following the full link at the end of the release.

Dr. O’Connell-Rodwell is the author of The Elephant’s Secret Sense. You can see videos of some of the elephant communication experiments she describes in the podcast on her Utopia Scientific site. The links to the videos are on this page: http://utopiascientific.org/Research/mushara.html.

Discovers seismic communication
Early in her research, Dr. O’Connell-Rodwell noticed behavior that indicates elephants are listening to acoustic (airborne) sounds by putting their ears out and orienting toward the sound’s source.

At other times, she also noticed a more puzzling behavior: Several elephants would freeze simultaneously, sometimes in mid-stride, and would press their front feet into the ground. They might also roll a foot forward so that only their toes touched the ground. At other times, they would lift a front leg. The behavior reminded her of the behavior she saw in insects that communicate seismically.

She began a series of experiments that eventually found that:

• Low-frequency elephant vocalizations, which are below the threshold of human hearing, travel through the ground in the same waveform as they do in the air. The ground vocalization can travel faster or more slowly than acoustic sound, depending on soil conditions, but has the potential of travelling further as there is no outer limit to how far sounds can travel through the earth.

• When she played a recorded elephant vocalization through the ground only (not through the air), other elephants detected the vocalization.

• Elephants understood the ground-borne vocalizations. For example, they responded appropriately to an alarm call from another elephant by assuming their defensive posture of bunching and freezing. They also responded only to alarm calls of elephants living in the area rather than those made from elephants elsewhere.

Further research revealed that there are two ways elephants ‘hear’ sound waves traveling through the ground:

Somatosensory pathway. Elephants feel the sound wave through their feet and trunks using the somatosensory pathway. Their feet and trunks have a large number of pacinian corpuscles -- cells that detect vibrations. The cells help transmit these vibrations to the brain.

Bone conduction pathway. Elephants detect ground-borne sound waves through their toenails. The vibration travels up the bone and into the middle ear where it vibrates the middle ear bones, just as an acoustic sound would.

Elephants also have anatomical adaptations to help them ‘hear’ these ground-borne vocalizations:

• They have an enlarged malleus, a middle ear bone that plays an important role in hearing. Animals that communicate seismically often have an enlarged malleus as it also facilitates bone conducted detection of vibrations.

• Elephants can close their middle ear canal, forming a closed acoustic tube which enhances bone conduction and blocks out acoustic sound, helping the elephant focus on the vibration pathway.

• They have an acoustically designed foot, with a thick fat pad that perhaps helps in the transmission or conduction of vibrations.

You can find the podcast interview at http://lifelines.libsyn.com/index.php?post_id=524100 and an article on the research in the journal Physiology: http://physiologyonline.physiology.org/cgi/search?sortspec=relevance&author1=O%27Connell-Rodwell&fulltext=&pubdate_year=&volume=&firstpage=.

For more information, please contact Christine Guilfoy at cguilfoy@the-aps.org or at 301.634.7253.

Physiology is the study of how molecules, cells, tissues and organs function to create health or disease. The American Physiological Society (APS) has been an integral part of this scientific discovery process since it was established in 1887.

Christine Guilfoy | Newswise Science News
Further information:
http://www.the-aps.org

Further reports about: APS Bird Communication Elephant Plattform Physiology elephants middle ear sound wave

More articles from Life Sciences:

nachricht Oestrogen regulates pathological changes of bones via bone lining cells
28.07.2017 | Veterinärmedizinische Universität Wien

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

Satellite data for agriculture

28.07.2017 | Information Technology

Abrupt motion sharpens x-ray pulses

28.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>