Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aphids Saved From Gruesome Death by Virus-Infected Bacteria

21.08.2009
The term "beneficial virus" sounds like an oxymoron.

But for pea aphids under attack by parasitic wasps, carrying infected bacteria is the difference between life and a slow death, according to new research from The University of Arizona in Tucson.

The wasps lay eggs inside the aphids, and the wasp larvae eat the living aphids from the inside out.

"A parasitoid death would be a very gruesome death," said first author Kerry M. Oliver. "It's like the movie 'Alien' where this thing grows inside of you and then ruptures out of you and kills you."

In laboratory experiments, about eighty percent of aphids carrying uninfected Hamiltonella defensa bacteria died as a result of wasp attacks.

However, most of the aphids whose H. defensa bacteria had a particular virus did survive wasp attacks.

The research is the first demonstration that a virus that infects bacteria can help rather than harm the bacteria's animal host, said Oliver, who

earned his doctorate at the UA.

The researchers also tested strains of aphids whose bacteria had once been
infected but were no longer.
"In every instance where the virus was lost, protection was lost almost completely," said Oliver, now an assistant professor at the University of Georgia in Athens.

The virus, known as APSE, carries genes that code for toxins the researchers think are involved in the anti-wasp defense.

By contrast, being infected by viruses toting toxin codes often makes disease-causing bacteria such as E. coli more, not less, harmful to their human hosts.

Biologists call the part of the APSE viral DNA that codes for toxins a "mobile genetic element." The virus can and does move that mobile genetic element between individual bacteria and between different species of bacteria, Moran said.

The mobile genetic element can become incorporated into the recipient's DNA, giving the recipient the ability to make the toxin.

Species-to-species transmission of DNA via mobile genetic element is quite different from the well-known means by which parents pass on their genetic material to their offspring. In animals, pieces of DNA typically cannot jump from one adult organism's genetic material to another adult organism's genetic material.

"The coolest thing to me is that you can have selection and adaptation for
(wasp) resistance that occurs in one species and then, whoosh, it could suddenly appear in another species," said Moran, a UA Regents' Professor of ecology and evolutionary biology.

Pea aphids can be agricultural pests and Aphidius ervi, the wasp the researchers tested, is used to control aphid populations.

The team's research may also reveal why biological control of aphids with wasps works sometimes but not others, she said.

"Our work suggests it depends which virus the bacteria have."

Oliver and his UA colleagues Patrick H. Degnan, Martha S. Hunter and Nancy A. Moran, will publish their paper, "Bacteriophages Encode Factors Required for Protection in a Symbiotic Mutualism," in the August 21 issue of the journal Science.

Moran, a UA Regents' Professor of ecology and evolutionary biology, has been investigating the role internal symbiotic bacteria play in the lives of the pea aphid Acyrthosiphon pisum for more than 15 years.

Aphids and other insects that feed on sap often house several species of such bacteria. Some, known as primary symbionts, provide aphids with essential nutrients that are not available in the nutrient-poor plant sap.

Aphids cannot survive without their primary symbionts, and those symbionts cannot survive outside of aphids.

The aphid-primary symbiont relationship is so close that the bacteria live inside specialized cells within the aphid.

In addition, aphids often carry other bacteria known as secondary symbionts.
Those are symbionts that are needed for survival and reproduction only under certain conditions, such as the presence of particular enemies.

Oliver, working with Hunter and Moran, discovered that aphids carrying the secondary symbiont Hamiltonella defensa were wasp-resistant, but aphids without H. defensa were susceptible.

But when aphids were kept in the laboratory for generations without being exposed to the wasps, some strains lost their ability to resist wasp attacks, the researchers found.

It turned out that the susceptible aphids still carried the H. defensa bacteria, but the bacteria had lost the APSE virus.

To rule out genetic differences between aphids or bacteria as the source of wasp susceptibility, the researchers needed to do another experiment.

The team compared aphids that had H. defensa with APSE virus to the same strain of aphids carrying the same strain of H. defensa but without the virus.

When exposed to the wasps, about 90 percent of aphids with infected bacteria survived wasp attacks. Aphids without infected bacteria were pretty much doomed.

"It really shows how complicated life is," Oliver said. "It's really a microbial world."

The National Science Foundation, the U.S. Department of Agriculture and the National Institutes of Health funded the research.

Researcher contact information:
Nancy Moran, 520-621-3581, nmoran@email.arizona.edu
Kerry Oliver, 706-542-2311, kmoliver@uga.edu
Related Web sites:
Kerry Oliver
http://www.ent.uga.edu/personnel/faculty/oliver.htm
Nancy Moran's Laboratory
http://eebweb.arizona.edu/faculty/moran/
Martha S. Hunter
http://ag.arizona.edu/ento/faculty/hunter.htm
UA Center for Insect Science
http://cis.arl.arizona.edu/

Mari N. Jensen | University of Arizona
Further information:
http://www.arizona.edu

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>