Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ants have an exceptionally ‘hi-def’ sense of smell

11.09.2012
Ants have four to five times more odor receptors than most other insects, a team of researchers have discovered.

The research team, led by Lawrence Zwiebel at Vanderbilt, recently completed the first full map of olfactory system that provides ants with their sense of taste and smell.

They found the industrious insects have genes that make about 400 distinct odorant receptors, special proteins thatdetect different odors. By comparison, silk moths have 52, fruit flies have 61, mosquitoes range from 74 to 158 and honeybees have 174.

“The most exciting moment for me was when the analysis came back showing that we had identified more than 400 OR genes, the largest number of any known insect species,” said Xiaofan Zhou, the research associate who headed up the characterization process. “It meant that we had successfully taken the first step toward gaining a new level of understanding of the complex social system that has made ants one of the most successful families on the planet.”

People have long been intrigued and inspired by ants’ ability to form highly organized colonies with division of labor, communication between individuals and ability to solve complex problems. For some time, scientists have also known that chemical communication plays an important role in ant behavior. “So it’s a reasonable supposition that this dramatic expansion in odor-sensing capability is what allowed ants to develop such a high level of social organization,” said Laurence Zwiebel, professor of biological sciences, who directed the new study published in the Aug. 30 issue of the journal PLoS Genetics.

Zwiebel’s team characterized the olfactory systems of two distinctly different ant species as part of an interdisciplinary project titled “Epigenetics of Behavior, Longevity and Social Organization in Ants,” headed by Danny Reinberg of New York University and funded by the Howard Hughes Medical Institute. In 2010, the project sequenced the genomes of the two species – the Florida carpenter ant (Camponotus floridanus) and the Indian jumping ant (Harpegnathos saltator) – for the first time. This effort set the stage to make the detailed olfactory study possible.

The olfactory system of most insects is centered in their antennae and is broadly made up of three different classes of receptors: odorant receptors (ORs), that identify different aromatic compounds and pheromones; gustatory receptors (GRs), that distinguish between different tastes and react to some pheromones; and newly discovered ionotropic glutamate receptors (IRs), that are narrowly tuned to various poisonous and toxic compounds. The study found that the primary expansion in the ant’s olfactory system is focused on ORs. The number of GRs and IRs are comparable to thosefound in other insects.

The initial automated analysis of the two ant genomes found only about 100 genes for ORs and ten GRs. “We knew these numbers were low because olfactory receptors are very difficult to identify,” Zhou said. So he and his colleagues designed a novel automated bioinformatic process for this purpose, combined with extensive manual evaluation.

The researchers also compared both the identity and expression levels of ORs in the two species and found significant differences. This wasn’t surprising because the two species were selected to reflect the high level of diversity that exists within the ant family. Carpenter ants live in large colonies with long-lived queens that produce all the fertilized eggs.

There are two castes of sterile workers. When the queen dies so does the colony. Jumping ants, by contrast, live in small groups, the difference between the queen and workers is limited, and some workers can mate and lay fertilized eggs. “The differences in receptors are most probably associated with the difference in lifestyles of the two species,” Zhou said.

Similarly, their analysis found important differences in the ORs in the antennae of males and females. Overall, they found that the males have only one third the number of ORs that the females express. “The primary role of males is fertilization of eggs, so we assume that the ORs that males express and that females don’t are probably tuned to pheromones produced by the queen,” Zhou said.

The team also took the initial steps in identifying the chemical signals that set off specific ORs. Research Associate Jesse Slone adapted an assay that the group initially developed for matching ORs with chemical signals in the malaria mosquito. The assay involves inserting the gene for a receptor into frog eggs so that the receptors are expressed on the egg’s surface. By wiring the eggs and then exposing them to different chemical compounds, the eggs produce a measurable electric signal when the receptor is activated.

Slone used this assay to identify the compounds that trigger one OR on each of the ant species. He found that an aromatic compound found in anise triggered the OR from the jumping ant that he tested. The receptors were found in both males and workers. Since studies have shown that anise oil has a repellant and/or insecticidal effect on some species of insects, the compound may be a general insect repellent that this OR is designed to detect, Slone speculates.

By comparison, the OR from the carpenter ant turned out to react to a naturally occurring odorant found in cooked beef and pork. The scientists have no idea why this compound is relevant to the ants, but they did establish that the specific receptor is enhanced in workers, relative to males.

“This is just the beginning. But we have demonstrated that we have the basic tools we need to act as ‘OR detectives’ to map the ants ‘odor space’ and identify the chemical signals that trigger specific behaviors in the ant’s extensive repertoire,” Slone said.

This represents the opening of a major new research avenue for the Zwiebel Lab, which has been focused on pioneering work deconstructing the olfactory system of the malaria mosquito. “When I was in graduate school, a group of us dreamed about deciphering the role that genes might play in ant social behavior. So I couldn’t pass up this opportunity when it came along. It’s taken 30 years but we’ve finally gotten to the point where we can actually do these studies.”

Assistant Professor of Biological Sciences Antonis Rokis, Professor Shelley Berger at the University of Pennsylvania, Assistant Professor Jürgen Liebig at Arizona State University, Assistant Professor Anandasankar Ray at the University of California, Riverside and Professor Danny Reinberg at New York University also contributed to the study, which was funded by the Howard Hughes Medical Institute.

Visit Research News @ Vanderbilt for more research news from Vanderbilt. [Media Note: Vanderbilt has a 24/7 TV and radio studio with a dedicated fiber optic line and ISDN line. Use of the TV studio with Vanderbilt experts is free, except for reserving fiber time.]

David F. Salisbury | Vanderbilt University
Further information:
http://www.vanderbilt.edu

More articles from Life Sciences:

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

nachricht Chlamydia: How bacteria take over control
28.03.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>