Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel Antitoxin Strategy Developed Using “Tagged Binding Agents”

26.02.2010
A study involving the world’s deadliest substance has yielded a new strategy to clear toxins from the body—which may lead to more efficient strategies against toxins that may be used in a bioterrorist event, as well as snake bites, scorpion stings, and even some important chronic diseases.

A Tufts-led team developed the new strategy to deliver small binding agents that seek out Botulinum toxin molecules and bind to them at several points. The binding agents each contain a common “tag” that is recognized by a single, co-administered anti-tag antibody. Once the toxin molecule is surrounded by bound antibodies, it is flushed out of the system through the liver before it can poison the body.

Botulinum toxin, which causes botulism, is the most acutely poisonous substance known and is considered among the most dangerous bioterrorist threats. Studies have shown that one gram of the toxin, which is produced by a bacterium that lives in soil, could kill upwards of a million people. Although currently available antitoxins can be mass produced and delivered in the event of an outbreak, they are costly to develop, house and deliver—and have a short shelf-life.

The Tufts study, in collaboration with researchers at Thomas Jefferson University in Philadelphia, is published this month in the journal Infection and Immunity and was funded by the National Institutes of Allergy and Infectious Diseases (NIAID) and the New England Regional Center for Excellence (NERCE) for Biodefense and Emerging Infectious Diseases.

“We’ve proven this approach to protect against Botulinum intoxication in mice and we hope this will lead to rapid development and deployment of many new anti-toxin therapies—for botulism and beyond,” said Charles B. Shoemaker, PhD, professor of biomedical sciences at Tufts University’s Cummings School of Veterinary Medicine and the study’s corresponding author.

The new findings expand on a 2002 breakthrough at the University of California at San Francisco, where scientists combined three monoclonal antibodies against Botulinum toxin that attached to different parts of the toxin molecule. Including three different antibodies dramatically increased the potency compared to fewer antibodies and prevented intoxication even following high-dose exposure. However, developing, producing, and stockpiling three different monoclonal antibodies against each toxin type is very expensive.

Instead of using three antibodies, the Tufts approach uses three small binding agents to direct a single monoclonal antibody to multiple sites on the biomolecule being targeted for clearance. The type of binding agents used can be selected from many scaffolds developed for commercial therapeutic applications (e.g. nanobodies, aptamers, darpins, FN3, microbodies, etc). These binding agents can be rapidly identified and improved using modern technologies and generally have excellent commercial production and product shelf-life properties. The single anti-tag monoclonal antibody can also be selected to have optimal isotype and commercialization properties.

What’s more, the binding agents can be produced with more than one tag, which enables them to direct more antibodies to the toxin—and synergistically improve target clearance from the body. Many binding agent scaffolds can be produced as functional multimers so that the different binding agents could be produced as “beads on a string,” leading to a single molecule that targets one, or even several, biomolecules for clearance from the body.

Using this approach, the researchers say, one would only need to create new binding agents, not new antibodies, to create a therapy to clear a toxin from the body—paving the way for new therapies that combat toxins ranging from animal venom to bioterrorist agents such as ricin. Tufts researchers are currently targeting Shiga toxin and C. difficile along with other types of Botulinum toxin. Future plans include targeting clearance of pathogenic cytokines that are implicated in inflammation and autoimmune diseases.

Treatment for botulism usually requires many weeks of intensive-care hospitalization, and exposure of even a small number of people would seriously disrupt health care delivery in any major city, studies have indicated. A vaccine has been developed, but widespread use is not currently being considered, the researchers say, since the likelihood of exposure is uncertain. Also, vaccination would block accepted treatments for a number of overactive muscle conditions, including dystonias, which respond to the toxin when administered in very small doses.

The Division of Infectious Diseases at the Cummings School of Veterinary Medicine is Tufts University’s largest research division. In 2003, the division was awarded a $25-million, seven-year contract from the National Institutes of Health (NIH) to develop products to rapidly identify, prevent, treat, and diagnose food and waterborne diseases that threaten public health. Tufts established one of seven national research units within the new national Food and Waterborne Disease Integrated Research Network. The award also launched the Microbiology and Botulism Research Unit, which combines botulism research efforts from Tufts and other public and private institutions in the U.S. and U.K.

The division also oversees the New England Regional Biosafety Laboratory, a 41,000 square foot, level-2 and level-3 facility dedicated to the study of existing and emerging infectious, diseases, toxin-mediated diseases and medical countermeasures important to biodefense.

Cummings School of Veterinary Medicine at Tufts University
Founded in 1978 in North Grafton, Mass., Cummings School of Veterinary Medicine at Tufts University is internationally esteemed for academic programs that impact society and the practice of veterinary medicine; three hospitals and two clinics that combined treat more than 80,000 animals each year; and groundbreaking research that benefits animal, public, and environmental health.

Tom Keppeler | Newswise Science News
Further information:
http://www.tufts.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>