Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antigen-Encapsulated Chitosan Particles Improve Immune Response

06.03.2013
Biomaterial enhances activation of cells critical for immunity

Biomedical engineering researchers at the University of Arkansas have encapsulated two types of protein antigens in chitosan and demonstrated that the combined material enables or improves three important immune responses.

The researchers – Bhanu Koppolu, a doctoral student and senior research assistant, and David Zaharoff, assistant professor of biomedical engineering – have worked with chitosan for many years and continue to demonstrate its effectiveness as potential biomaterial for the targeted delivery of vaccines and immunotherapy.

“A great deal of effort has been spent developing delivery systems capable of enhancing vaccine responses with specific antigens,” Koppolu said. “We believe we have developed a system that will accomplish this. In all tests, our material outperformed soluble antigen. The encapsulation of antigens in chitosan particles enhanced uptake, activation and presentation by antigen-presenting cells.”

The researchers’ study was published in the journal Biomaterials.

Vaccine development over the past several decades has shifted toward antigens, which are toxins or other foreign substances that induce an immune response, specifically the production of antibodies. Before this shift, vaccine development had focused on developing whole pathogens, which are bacteria and viruses that cause minor versions of diseases for the purpose of immune response.

With this goal, medical researchers have focused on encapsulating polypeptide antigens in nano- and micro-particles as a strategy to enhance immune response. Packaging antigens in these particles has several advantages. The particles prevent antigen degradation, facilitate ingestion of chemical agents into antigen-presenting cells and can be engineered to carry adjuvants, which are substances in addition to the primary antigen or drug.

One particle material that Zaharoff and other researchers have focused on is chitosan, which is a natural polysaccharide derived primarily from the exoskeletons of crustaceans. Chitosan-based vaccine delivery systems have many advantages, Zaharoff said. The particles are easy to produce, and polypeptides can be encapsulated during particle formation or absorbed into particle surfaces after formation.

Most importantly, chitosan’s muco-adhesiveness and ability to loosen gaps between layers of tissue make it an excellent vehicle for delivering vaccine agents.

For their study, Koppolu and Zaharoff focused solely on the function of so-called antigen-presenting cells –macrophages and dendritic cells – which play a critical role in the production of antibodies that fight bacteria, viruses and other foreign substances.

Macrophage cells are phagocytic, meaning they are capable of engulfing and absorbing bacteria and other small cells and particles. Macrophage cells exist in stationary form in tissues or as a mobile white blood cell, especially at sites of infection. Dendritic cells are other types of immune cells that process antigen material. They are short, branch-like extensions of nerve cells.

The researchers’ in vitro experiments demonstrated that antigens encapsulated in chitosan enhanced activation of antigen-presenting cells. The combined material also increased the release of cytokines – proteins that produce an immune response – and caused a proliferation of antigen-specific T cells, or lymphocytes, which also actively participate in immune response. The researchers discovered that uptake of antigen encapsulated in chitosan by dendritic cells and macrophages depended on particle size, antigen concentration and exposure time.

Zaharoff has investigated chitosan for several years, going back to his time (2004-2008) at the National Cancer Institute’s Laboratory of Tumor Immunology and Biology. In 2009, after coming to the University of Arkansas and setting up the Laboratory of Vaccine and Immunotherapy Delivery, Zaharoff presented results of a major study of the effects of chitosan combined with Interleukin-12, a powerful cytokine.

The combined material eradicated bladder tumors in mice. Zaharoff is currently in discussions with clinical investigators at the University of Arkansas for Medical Sciences to translate the bladder cancer immunotherapy into human trials.

Zaharoff is holder of the Twenty-First Century Professorship in Biomedical Engineering in the College of Engineering.

CONTACTS:
Bhanu Koppolu, doctoral student/senior research assistant, biomedical engineering
College of Engineering
479-575-3964, bhanu.koppolu@gmail.com
David Zaharoff, assistant professor, biomedical engineering
College of Engineering
479-575-2005, zaharoff@uark.edu
Matt McGowan, science and research communications officer
University Relations
479-575-4246, dmcgowa@uark.edu
Follow University of Arkansas research on Twitter @UArkResearch

Matt McGowan | Newswise
Further information:
http://www.uark.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>