Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Anticipation of stressful situations accelerates cellular aging

22.02.2012
Short telomeres associated with increased risk for chronic diseases

The ability to anticipate future events allows us to plan and exert control over our lives, but it may also contribute to stress-related increased risk for the diseases of aging, according to a study by UCSF researchers.

In a study of 50 women, about half of them caring for relatives with dementia, the psychologists found that those most threatened by the anticipation of stressful tasks in the laboratory and through public speaking and solving math problems, looked older at the cellular level.

The researchers assessed cellular age by measuring telomeres, which are the protective caps on the ends of chromosomes. Short telomeres index older cellular age and are associated with increased risk for a host of chronic diseases of aging, including cancer, heart disease and stroke.

"We are getting closer to understanding how chronic stress translates into the present moment," said Elissa Epel, PhD, an associate professor in the UCSF Department of Psychiatry and a lead investigator on the study. "As stress researchers, we try to examine the psychological process of how people respond to a stressful event and how that impacts their neurobiology and cellular health. And we're making some strides in that."

The researchers also found evidence that caregivers anticipated more threat than non-caregivers when told that they would be asked to perform the same public speaking and math tasks. This tendency to anticipate more threat put them at increased risk for short telomeres. Based on that, the researchers propose that higher levels of anticipated threat in daily life may promote cellular aging in chronically stressed individuals.

"How you respond to a brief stressful experience in the laboratory may reveal a lot about how you respond to stressful experiences in your daily life," said Aoife O'Donovan, PhD, a Society in Science: Branco Weiss Fellow at UCSF and the study's lead author. "Our findings are preliminary for now, but they suggest that the major forms of stress in your life may influence how your respond to more minor forms of stress, such as losing your keys, getting stuck in traffic or leading a meeting at work. Our goal is to gain better understanding of how psychological stress promotes biological aging so that we can design targeted interventions that reduce risk for disease in stressed individuals. We now have preliminary evidence that higher anticipatory threat perception may be one such mechanism."

The study will be published in the May issue of the journal Brain, Behavior and Immunity.

Research on telomeres, and the enzyme that makes them, was pioneered by three Americans, including UCSF molecular biologist and co-author on this manuscript Elizabeth Blackburn, PhD, who co-discovered the telomerase enzyme in 1985. The scientists received the Nobel Prize in Physiology or Medicine in 2009 for this work.

The research related to anticipation was funded by grants from the Division of Behavioral and Social Research at the National Institute of Aging/National Institutes of Health and Bernard and Barbro Foundation as well as by a Society in Science: Branco Weiss Fellowship.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care. For further information, please visit http://www.ucsf.edu/

Juliana Bunim | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Life Sciences:

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>