Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Anticipation of stressful situations accelerates cellular aging

22.02.2012
Short telomeres associated with increased risk for chronic diseases

The ability to anticipate future events allows us to plan and exert control over our lives, but it may also contribute to stress-related increased risk for the diseases of aging, according to a study by UCSF researchers.

In a study of 50 women, about half of them caring for relatives with dementia, the psychologists found that those most threatened by the anticipation of stressful tasks in the laboratory and through public speaking and solving math problems, looked older at the cellular level.

The researchers assessed cellular age by measuring telomeres, which are the protective caps on the ends of chromosomes. Short telomeres index older cellular age and are associated with increased risk for a host of chronic diseases of aging, including cancer, heart disease and stroke.

"We are getting closer to understanding how chronic stress translates into the present moment," said Elissa Epel, PhD, an associate professor in the UCSF Department of Psychiatry and a lead investigator on the study. "As stress researchers, we try to examine the psychological process of how people respond to a stressful event and how that impacts their neurobiology and cellular health. And we're making some strides in that."

The researchers also found evidence that caregivers anticipated more threat than non-caregivers when told that they would be asked to perform the same public speaking and math tasks. This tendency to anticipate more threat put them at increased risk for short telomeres. Based on that, the researchers propose that higher levels of anticipated threat in daily life may promote cellular aging in chronically stressed individuals.

"How you respond to a brief stressful experience in the laboratory may reveal a lot about how you respond to stressful experiences in your daily life," said Aoife O'Donovan, PhD, a Society in Science: Branco Weiss Fellow at UCSF and the study's lead author. "Our findings are preliminary for now, but they suggest that the major forms of stress in your life may influence how your respond to more minor forms of stress, such as losing your keys, getting stuck in traffic or leading a meeting at work. Our goal is to gain better understanding of how psychological stress promotes biological aging so that we can design targeted interventions that reduce risk for disease in stressed individuals. We now have preliminary evidence that higher anticipatory threat perception may be one such mechanism."

The study will be published in the May issue of the journal Brain, Behavior and Immunity.

Research on telomeres, and the enzyme that makes them, was pioneered by three Americans, including UCSF molecular biologist and co-author on this manuscript Elizabeth Blackburn, PhD, who co-discovered the telomerase enzyme in 1985. The scientists received the Nobel Prize in Physiology or Medicine in 2009 for this work.

The research related to anticipation was funded by grants from the Division of Behavioral and Social Research at the National Institute of Aging/National Institutes of Health and Bernard and Barbro Foundation as well as by a Society in Science: Branco Weiss Fellowship.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care. For further information, please visit http://www.ucsf.edu/

Juliana Bunim | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>