Antibiotics Might Team Up to Fight Deadly Staph Infections

Individually, lankacidin and lankamycin, two antibiotics produced naturally by the microbe streptomyces, are marginally effective in warding off pathogens, says Alexander Mankin, professor and associate director of the UIC Center for Pharmaceutical Biotechnology and lead investigator of the portion of the study conducted at UIC.

Mankin's team found that when used together, the two antibiotics are much more successful in inhibiting growth of dangerous pathogens such as MRSA, or methicillin-resistant Staphylococcus aureus, and possibly others.

MRSA is a staph infection that is resistant to certain antibiotics. According to a 2007 government report, more than 90,000 Americans get potentially deadly infections each year.

The research results are published in the Jan. 11 online edition of the Proceedings of the National Academy of Sciences of the USA.

Lankacidin and lankamycin act upon the ribosomes, the protein-synthesizing factories of the cell. A newly-made protein exits the ribosome through a tunnel through the ribosome body. Some antibiotics stave off an infection by preventing the ribosome from assembling proteins, while others bind in the tunnel and block the protein's passage.

Through the use of X-ray crystallography, which determines the arrangement of atoms in biological molecules, the Israeli team, led by Ada Yonath, a 2009 Nobel Prize winner, discovered the exact binding site of lankacidin in the ribosome. Mankin's group demonstrated that lankacidin prevents the ribosome from assembling new proteins.

However, when researchers realized that streptomyces also manufactures lankamycin, they became curious whether the two drugs might help each other. Biochemical analysis and molecular modeling showed that lankamycin binds in the ribosomal tunnel right next to lankacidin.

“What we found most amazing is that the two antibiotics appeared to help each other in stopping pathogens from making new proteins and in inhibiting bacterial growth,” Mankin said.

Today, many companies are attempting to make individual drugs better, Mankin said. What the research suggests is that in some cases, it is a “much better strategy not to improve individual drugs, but the combinations of drugs that can act together.”

Mankin's team includes Liqun Xiong and Dorota Klepacki of the UIC Center for Pharmaceutical Biotechnology.

Media Contact

Sam Hostettler Newswise Science News

More Information:

http://www.uic.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors