Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Antibiotic treatment increases the severity of asthma in young mice

Treatment with the antibiotic vancomycin increases the severity of allergic asthma in young mice, researchers in Canada have revealed in a new study published in EMBOreports. The results are consistent with the “hygiene hypothesis” that links the loss of beneficial bacteria in the community of microorganisms in the gut, collectively known as the microbiota, to the onset of asthma.
Allergic asthma affects more than 100 million people worldwide and its prevalence is increasing, particularly among children in industrialized countries. Improved sanitation and widespread antibiotic use have been cited as possible reasons for the increase.

“We administered antibiotics to mice of different ages to determine if there was a link between the makeup of the microbial community in the gut and the extent of experimentally induced allergic asthma,” said Dr. Brett Finlay, Professor at the Michael Smith Laboratories at the University of British Columbia, Canada. “Treatment of young mice with the antibiotic vancomycin reduced the diversity of microbes in the gut, significantly altered the composition of the bacterial population, and increased the susceptibility of young animals to experimentally induced asthma.”
Many studies have suggested that the colonization of the gut early in life plays a substantial role in shaping the development of the immune system. More than 100 trillion bacteria, including more than 1000 bacterial species, colonize the human gut. If the balance of the microbial community in the gut is disrupted, the ability of the body to resist the onset of disease may be compromised.

Dr. Finlay remarked: “Although the precise link between the immune responses in the gut and lung remain unclear, we think that vancomycin selects for a community of microbes in the gut that somehow disrupts the inflammatory and regulatory immune responses at the two different sites. In mice, the restructuring of the intestinal microbial population during infancy after antibiotic treatment is enough to lead to exacerbated asthma.”

The scientists used genome sequencing of the microbial population to reveal the diversity of the microbial community. The severity of asthma was assessed by different molecular assays and direct examination of lung tissue.

Said Finlay: “Our results confirm that the early months of life are a crucial time in which the gut microbial community may influence key immunological events that alter the sensitivity of the body’s immune system to the response to allergens.”

The work is part of the CIHR Canadian Microbiome Initiative, which was created to provide an opportunity for Canadian researchers to contribute to international efforts to understand the role of the human microbiome in health and disease.

Early life antibiotic-driven changes in microbiota enhance susceptibility to allergic asthma

Shannon L. Russell, Matthew J. Gold, Martin Hartmann, Benjamin P Willing, Lisa Thorson, Marta Wlodarska, Navkiran Gill, Marie-Renée Blanchet, William Mohn, Kelly McNagny, Brett Finlay

Read the paper:
Further information on EMBO reports is available at

Media Contacts
Barry Whyte
Head | Public Relations and Communications

Yvonne Kaul
Communications Offer
Tel: +49 6221 8891 108/111

About EMBO
EMBO stands for excellence in the life sciences. The organization enables the best science by supporting talented researchers, stimulating scientific exchange and advancing policies for a world-class European research environment.

EMBO is an organization of 1500 leading life scientist members that fosters new generations of researchers to produce world-class scientific results. EMBO helps young scientists to advance their research, promote their international reputations and ensure their mobility. Courses, workshops, conferences and scientific journals disseminate the latest research and offer training in cutting-edge techniques to maintain high standards of excellence in research practice. EMBO helps to shape science and research policy by seeking input and feedback from our community and by following closely the trends in science in Europe.

Yvonne Kaul | idw
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>