Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Anti-Cancer Compound Derived from Ancient Plant

28.05.2010
UA researchers make the discovery after using a different agricultural method to grow Withania somnifera (L.) Dunal, a winter cherry plant.

University of Arizona scientists have used a new quick-growing technique to produce a water-soluble form of a plant compound that combats cancer and encourages the survival of healthy cells.

Research trials are under way on this sulfate form of withaferin A, which could develop into a new anti-cancer drug.

Scientifically studied since the 1960s, withaferin A reduces tumor mass by preventing the growth of blood vessels that make a tumor malignant. The compound is derived from the roots of a winter cherry plant, the extracts of which have been used for more than 3,000 years in India as a general tonic to build stamina, improve mental concentration, relieve stress and enhance health.

"Finding a water-soluble analog of withaferin A is significant, especially if it turns out to be a clinically useful drug," said Leslie Gunatilaka, director of the UA's Southwest Center for Natural Products Research and Commercialization, or Natural Products Center.

Withania is widely cultivated for commercial use in its native India, and also in the Middle East and in North America. It often is sold under the name ashwagandha as a dietary supplement in the U.S. and Europe.

Although traditionally grown outdoors in soil, the UA team decided to use an entirely nontraditional method - aeroponics - to produce bulk amounts of withaferin A needed for biological evaluation.

In aeroponics, plants are set over enclosed chambers where their suspended roots are misted with water and nutrients, instead of growing in soil.

The withania plants grew about five times larger using this method than if they had been grown in soil.

"Using the aeroponic system for cultivation, we were able to produce more than 20 grams of withaferin A in a single greenhouse. It normally costs around $195 for just 10 milligrams," Gunatilaka said. "Also, it usually takes two to three years to mature to sizeable roots to be commercially viable, but here it takes just six to nine months."

Not only did the aeroponic method yield bigger plants faster, with more withaferin A than usual, it also unexpectedly stimulated the plants to produce large amounts of the new natural product - a water-soluble sulfate form of withaferin A.

Upon testing, this new form demonstrated the same bioactivity as withaferin A. It was able to inhibit the proliferation and survival of tumor cells, disrupt tumor formation and induce the healthy cells' heat-shock response to reduce stress and increase survival, according to the researchers.

The difference is that the sulfate form of withaferin A is slower acting and water-soluble; it can be converted to withaferin A in cell culture media. The researchers, expecting that this withaferin A form will convert to its active form when metabolized in the body, are pursuing further testing in animal models. The patent will be held by the UA and the Massachusetts Institute of Technology.

Natural Products Center scientists collaborated with researchers from the Whitehead Institute at MIT on this project. In addition to Gunatilaka, the researchers included Ya-ming Xu, Marilyn T. Marron, Emily Seddon and Stephen P. McLaughlin of the Natural Products Center; Dennis Ray of the UA School of Plant Sciences; and Luke Whitesell of the Whitehead Institute.

The UA College of Agriculture and Life Sciences provided funding for the project, along with the USDA.

Withaferin A is just one of hundreds of such compounds that scientists with the Natural Products Center have isolated, characterized and evaluated since the center's inception in 1996. Center researchers look for compounds in desert plants and their associated microorganisms that can improve human health and be developed as potential industrial products in Arizona.

Natural Products Center scientists have discovered several other compounds in desert organisms that can significantly inhibit the growth of tumors. Many have been patented and have progressed to extended evaluation for their pharmaceutical value.

As part of the Office of Arid Lands Studies, the Natural Products Center recently joined the School of Natural Resources and the Environment in the UA's College of Agriculture and Life Sciences.

CONTACTS:

Leslie Gunatilaka, Natural Products Center (520-621-9932; leslieg@ag.arizona.edu)

Susan McGinley, College of Agriculture and Life Sciences (520-621-7182; mcginley@ag.arizona.edu)

Jennifer Fitzenberger | University of Arizona
Further information:
http://www.arizona.edu

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>