Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Anti-Cancer Compound Derived from Ancient Plant

28.05.2010
UA researchers make the discovery after using a different agricultural method to grow Withania somnifera (L.) Dunal, a winter cherry plant.

University of Arizona scientists have used a new quick-growing technique to produce a water-soluble form of a plant compound that combats cancer and encourages the survival of healthy cells.

Research trials are under way on this sulfate form of withaferin A, which could develop into a new anti-cancer drug.

Scientifically studied since the 1960s, withaferin A reduces tumor mass by preventing the growth of blood vessels that make a tumor malignant. The compound is derived from the roots of a winter cherry plant, the extracts of which have been used for more than 3,000 years in India as a general tonic to build stamina, improve mental concentration, relieve stress and enhance health.

"Finding a water-soluble analog of withaferin A is significant, especially if it turns out to be a clinically useful drug," said Leslie Gunatilaka, director of the UA's Southwest Center for Natural Products Research and Commercialization, or Natural Products Center.

Withania is widely cultivated for commercial use in its native India, and also in the Middle East and in North America. It often is sold under the name ashwagandha as a dietary supplement in the U.S. and Europe.

Although traditionally grown outdoors in soil, the UA team decided to use an entirely nontraditional method - aeroponics - to produce bulk amounts of withaferin A needed for biological evaluation.

In aeroponics, plants are set over enclosed chambers where their suspended roots are misted with water and nutrients, instead of growing in soil.

The withania plants grew about five times larger using this method than if they had been grown in soil.

"Using the aeroponic system for cultivation, we were able to produce more than 20 grams of withaferin A in a single greenhouse. It normally costs around $195 for just 10 milligrams," Gunatilaka said. "Also, it usually takes two to three years to mature to sizeable roots to be commercially viable, but here it takes just six to nine months."

Not only did the aeroponic method yield bigger plants faster, with more withaferin A than usual, it also unexpectedly stimulated the plants to produce large amounts of the new natural product - a water-soluble sulfate form of withaferin A.

Upon testing, this new form demonstrated the same bioactivity as withaferin A. It was able to inhibit the proliferation and survival of tumor cells, disrupt tumor formation and induce the healthy cells' heat-shock response to reduce stress and increase survival, according to the researchers.

The difference is that the sulfate form of withaferin A is slower acting and water-soluble; it can be converted to withaferin A in cell culture media. The researchers, expecting that this withaferin A form will convert to its active form when metabolized in the body, are pursuing further testing in animal models. The patent will be held by the UA and the Massachusetts Institute of Technology.

Natural Products Center scientists collaborated with researchers from the Whitehead Institute at MIT on this project. In addition to Gunatilaka, the researchers included Ya-ming Xu, Marilyn T. Marron, Emily Seddon and Stephen P. McLaughlin of the Natural Products Center; Dennis Ray of the UA School of Plant Sciences; and Luke Whitesell of the Whitehead Institute.

The UA College of Agriculture and Life Sciences provided funding for the project, along with the USDA.

Withaferin A is just one of hundreds of such compounds that scientists with the Natural Products Center have isolated, characterized and evaluated since the center's inception in 1996. Center researchers look for compounds in desert plants and their associated microorganisms that can improve human health and be developed as potential industrial products in Arizona.

Natural Products Center scientists have discovered several other compounds in desert organisms that can significantly inhibit the growth of tumors. Many have been patented and have progressed to extended evaluation for their pharmaceutical value.

As part of the Office of Arid Lands Studies, the Natural Products Center recently joined the School of Natural Resources and the Environment in the UA's College of Agriculture and Life Sciences.

CONTACTS:

Leslie Gunatilaka, Natural Products Center (520-621-9932; leslieg@ag.arizona.edu)

Susan McGinley, College of Agriculture and Life Sciences (520-621-7182; mcginley@ag.arizona.edu)

Jennifer Fitzenberger | University of Arizona
Further information:
http://www.arizona.edu

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>