Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Anti-Cancer Compound Derived from Ancient Plant

28.05.2010
UA researchers make the discovery after using a different agricultural method to grow Withania somnifera (L.) Dunal, a winter cherry plant.

University of Arizona scientists have used a new quick-growing technique to produce a water-soluble form of a plant compound that combats cancer and encourages the survival of healthy cells.

Research trials are under way on this sulfate form of withaferin A, which could develop into a new anti-cancer drug.

Scientifically studied since the 1960s, withaferin A reduces tumor mass by preventing the growth of blood vessels that make a tumor malignant. The compound is derived from the roots of a winter cherry plant, the extracts of which have been used for more than 3,000 years in India as a general tonic to build stamina, improve mental concentration, relieve stress and enhance health.

"Finding a water-soluble analog of withaferin A is significant, especially if it turns out to be a clinically useful drug," said Leslie Gunatilaka, director of the UA's Southwest Center for Natural Products Research and Commercialization, or Natural Products Center.

Withania is widely cultivated for commercial use in its native India, and also in the Middle East and in North America. It often is sold under the name ashwagandha as a dietary supplement in the U.S. and Europe.

Although traditionally grown outdoors in soil, the UA team decided to use an entirely nontraditional method - aeroponics - to produce bulk amounts of withaferin A needed for biological evaluation.

In aeroponics, plants are set over enclosed chambers where their suspended roots are misted with water and nutrients, instead of growing in soil.

The withania plants grew about five times larger using this method than if they had been grown in soil.

"Using the aeroponic system for cultivation, we were able to produce more than 20 grams of withaferin A in a single greenhouse. It normally costs around $195 for just 10 milligrams," Gunatilaka said. "Also, it usually takes two to three years to mature to sizeable roots to be commercially viable, but here it takes just six to nine months."

Not only did the aeroponic method yield bigger plants faster, with more withaferin A than usual, it also unexpectedly stimulated the plants to produce large amounts of the new natural product - a water-soluble sulfate form of withaferin A.

Upon testing, this new form demonstrated the same bioactivity as withaferin A. It was able to inhibit the proliferation and survival of tumor cells, disrupt tumor formation and induce the healthy cells' heat-shock response to reduce stress and increase survival, according to the researchers.

The difference is that the sulfate form of withaferin A is slower acting and water-soluble; it can be converted to withaferin A in cell culture media. The researchers, expecting that this withaferin A form will convert to its active form when metabolized in the body, are pursuing further testing in animal models. The patent will be held by the UA and the Massachusetts Institute of Technology.

Natural Products Center scientists collaborated with researchers from the Whitehead Institute at MIT on this project. In addition to Gunatilaka, the researchers included Ya-ming Xu, Marilyn T. Marron, Emily Seddon and Stephen P. McLaughlin of the Natural Products Center; Dennis Ray of the UA School of Plant Sciences; and Luke Whitesell of the Whitehead Institute.

The UA College of Agriculture and Life Sciences provided funding for the project, along with the USDA.

Withaferin A is just one of hundreds of such compounds that scientists with the Natural Products Center have isolated, characterized and evaluated since the center's inception in 1996. Center researchers look for compounds in desert plants and their associated microorganisms that can improve human health and be developed as potential industrial products in Arizona.

Natural Products Center scientists have discovered several other compounds in desert organisms that can significantly inhibit the growth of tumors. Many have been patented and have progressed to extended evaluation for their pharmaceutical value.

As part of the Office of Arid Lands Studies, the Natural Products Center recently joined the School of Natural Resources and the Environment in the UA's College of Agriculture and Life Sciences.

CONTACTS:

Leslie Gunatilaka, Natural Products Center (520-621-9932; leslieg@ag.arizona.edu)

Susan McGinley, College of Agriculture and Life Sciences (520-621-7182; mcginley@ag.arizona.edu)

Jennifer Fitzenberger | University of Arizona
Further information:
http://www.arizona.edu

More articles from Life Sciences:

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>