Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Anti-aging hormone Klotho inhibits renal fibrosis, cancer growth

14.04.2011
A natural hormone known to inhibit aging can also protect kidneys against renal fibrosis, UT Southwestern Medical Center researchers have demonstrated.

Scientists led by Dr. Makoto Kuro-o, associate professor of pathology, showed in mice that the anti-aging hormone Klotho suppressed both renal fibrosis ¡V a common complication of chronic kidney disease ¡V and the spread of cancer. The findings are available online in the Journal of Biological Chemistry.

More than 26 million people in the U.S. are affected by chronic kidney disease. Researchers say Klotho also helps patients with acute injury of the kidney that obstructs urine outflow or causes a drop in blood flow to the kidney. Nearly half of the patients in hospital intensive care units have some form of kidney injury due to drugs, surgery, bleeding or dehydration, said Dr. Kuro-o, the study's senior author who discovered Klotho more than a decade ago.

"Within a few days after injury, renal function can be completely gone," he said. "We show that Klotho injection in a drip infusion could be effective not only as an initial treatment for acute kidney injury, but also to prevent its progression into chronic kidney disease. This offers real hope for patients with renal disease."

The UT Southwestern researchers focused on mesenchymal cells: multipotent cells that can differentiate into a variety of cell types. These are essential for development and growth, but when the cells are out of balance, they can morph into a pathological form that causes fibrosis (toughening of the tissue layers) and metastasis in cancer cells, said Dr. Kuro-o.

Scientists involved in this study also found that Klotho prevents cancer migration and metastasis. In the study, they blocked a ureter to cause renal fibrosis or introduced human cancer cells in laboratory mice. Secreted Klotho was effective in blocking three signaling pathways ¡V TGF-ƒÒ1, Wnt and IGF-1 ¡V that can cause tissue fibrosis or cancer metastasis.

The researchers reported for the first time that Klotho binds to the cells' transforming growth factor receptor and inhibits signaling required for epithelial-to-mesenchymal transition (EMT), a "master switch" that causes cells to morph into a more pliable form. EMT cancer cells can squeeze into surrounding tissue and eventually into the bloodstream, leading to metastatic spreading of cancer.

"This is further evidence that Klotho is an understudied tumor-suppressor and really quite important because it's secreted and flows through the body," said Dr. David Boothman, professor of radiation oncology and pharmacology, associate director for translational research and an author of the study. "It could be a major surveillance mechanism for blocking tumor formation and progression."

Other UT Southwestern researchers involved in the study were lead author Dr. Shigehiro Doi, former postdoctoral researcher in pathology now at Hiroshima University in Japan; co-lead author Dr. Yonglong Zou, research associate in the Harold C. Simmons Comprehensive Cancer Center; Dr. Osamu Togao, postdoctoral researcher in the Advanced Imaging Research Center (AIRC); Johanne Pastor, senior research associate in pathology; Dr. George John, instructor of pathology; Lei Wang, research assistant in pathology; Dr. Kazuhiro Shizaki, instructor of pathology; and Dr. Masaya Takahashi, associate professor of radiology and in the AIRC.

Funding for the study was provided in part by grants from the National Institutes of Health, the Department of Energy, Genzyme Corp. and Philips Japan.

Visit www.utsouthwestern.org/cancer to learn more about UT Southwestern's clinical services in cancer. For more about clinical services in urology at UT Southwestern, visit www.utsouthwestern.org/urology .

This news release is available on our World Wide Web home page at http://www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via email, subscribe at www.utsouthwestern.edu/receivenews

Robin Russell | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>