Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antagonistic genes control rice growth

17.12.2009
Scientists at the Carnegie Institution, with colleagues,* have found that a plant steroid prompts two genes to battle each other—one suppresses the other to ensure that leaves grow normally in rice and the experimental plant Arabidopsis thaliana, a relative of mustard. The results, published in the December 15, 2009, issue of The Plant Cell, have important implications for understanding how to manipulate crop growth and yield.

In plants, steroid levels reflect environmental and internal signals and control many processes. Steroid hormones called brassinosteroids (BRs) start their action on the surface of the cell and, through a molecular relay, send signals into the cell's nucleus to turn on or off specific genes, particularly those that are critical to regulating plant growth and development. Although a lot has been discovered about how the steroid affects genes in Arabidopsis, much less was known in crop plants such as rice.

Co-author Zhi-Yong Wang at Carnegie's Department of Plant Biology explained the work: "We knew that the steroid is very important for activating genes that control cell growth in Arabidopsis as well as in rice. One of the most sensitive responses to the steroid is leaf bending in rice, caused by expansion of the upper cells at the joint between leaf blade and leaf sheath. We wanted to determine how the steroid functioned in rice. We found that the steroid affects two genes encoding (or producing) proteins that turn other genes on or off; they are called transcription factors. In rice, when a gene called Increased Leaf Inclination1 (ILI1) is turned on, it causes leaf bending. Interestingly, we found that the ILI1 protein also binds to another transcription factor, called IBH1, and inhibits its function. When there is too much ILI1 protein, the leaves bend excessively making the plant shaggy. When IBH1 level is high, cell growth is stopped at the joint and the rice is very erect, taking up less space. In normal rice plants the balance between ILI1 and IBH1 keeps growth in check."

This pair of genes provides a unique tool to control the leaf angle, which is important for crop yield because erect leaves improve light capture and allows rice plants to be planted at higher density for a higher yield per hectare.

Through a series of experiments, the researchers determined how the steroid and genes interact. They found that brassinosteroid oppositely regulate these genes—ILI1 was activated and IBH1 was repressed. As such, the steroid tips the balance between their protein products, ILI1 and IBH1, to initiate cell growth.

"It appears that the steroid causes the IBH1 genes to stop the production of IBH1 protein, and in the meantime increases the production of the ILI1 protein, which turns off IBH1's inhibition of cell growth. This ensures that the cell grows to just the right length according to the level of steroid," commented Wang.

The researchers performed similar experiments on the mustard, which showed that steroid interacted with the mustard genes the same way. "Since similar genes are doing the same thing in these different plants, this process is likely to be very old and found in many different higher plants. The more we learn about such mechanisms, the closer we will come to better engineering crops to feed a growing population," concluded Wang.

The work was supported by the National Science Foundation of China; The National Institute of Health; the Ministry of Education, Culture, Sports, Science and Technology of Japan; and the Carnegie Institution.

*Colleagues on the study are from the following institutions: Institute of Botany, Chinese Academy of Sciences; Chinese Academy of Agricultural Sciences; Department of Plant Biology, Carnegie Institution; Yonsei University, Korea; RIKEN Advanced Science Institute, Japan.

The Carnegie Institution for Science (www.CIW.edu) has been a pioneering force in basic scientific research since 1902. It is a private, nonprofit organization with six research departments throughout the U.S. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Zhi-Yong Wang | EurekAlert!
Further information:
http://www.ciw.edu

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>