Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antagonistic genes control rice growth

17.12.2009
Scientists at the Carnegie Institution, with colleagues,* have found that a plant steroid prompts two genes to battle each other—one suppresses the other to ensure that leaves grow normally in rice and the experimental plant Arabidopsis thaliana, a relative of mustard. The results, published in the December 15, 2009, issue of The Plant Cell, have important implications for understanding how to manipulate crop growth and yield.

In plants, steroid levels reflect environmental and internal signals and control many processes. Steroid hormones called brassinosteroids (BRs) start their action on the surface of the cell and, through a molecular relay, send signals into the cell's nucleus to turn on or off specific genes, particularly those that are critical to regulating plant growth and development. Although a lot has been discovered about how the steroid affects genes in Arabidopsis, much less was known in crop plants such as rice.

Co-author Zhi-Yong Wang at Carnegie's Department of Plant Biology explained the work: "We knew that the steroid is very important for activating genes that control cell growth in Arabidopsis as well as in rice. One of the most sensitive responses to the steroid is leaf bending in rice, caused by expansion of the upper cells at the joint between leaf blade and leaf sheath. We wanted to determine how the steroid functioned in rice. We found that the steroid affects two genes encoding (or producing) proteins that turn other genes on or off; they are called transcription factors. In rice, when a gene called Increased Leaf Inclination1 (ILI1) is turned on, it causes leaf bending. Interestingly, we found that the ILI1 protein also binds to another transcription factor, called IBH1, and inhibits its function. When there is too much ILI1 protein, the leaves bend excessively making the plant shaggy. When IBH1 level is high, cell growth is stopped at the joint and the rice is very erect, taking up less space. In normal rice plants the balance between ILI1 and IBH1 keeps growth in check."

This pair of genes provides a unique tool to control the leaf angle, which is important for crop yield because erect leaves improve light capture and allows rice plants to be planted at higher density for a higher yield per hectare.

Through a series of experiments, the researchers determined how the steroid and genes interact. They found that brassinosteroid oppositely regulate these genes—ILI1 was activated and IBH1 was repressed. As such, the steroid tips the balance between their protein products, ILI1 and IBH1, to initiate cell growth.

"It appears that the steroid causes the IBH1 genes to stop the production of IBH1 protein, and in the meantime increases the production of the ILI1 protein, which turns off IBH1's inhibition of cell growth. This ensures that the cell grows to just the right length according to the level of steroid," commented Wang.

The researchers performed similar experiments on the mustard, which showed that steroid interacted with the mustard genes the same way. "Since similar genes are doing the same thing in these different plants, this process is likely to be very old and found in many different higher plants. The more we learn about such mechanisms, the closer we will come to better engineering crops to feed a growing population," concluded Wang.

The work was supported by the National Science Foundation of China; The National Institute of Health; the Ministry of Education, Culture, Sports, Science and Technology of Japan; and the Carnegie Institution.

*Colleagues on the study are from the following institutions: Institute of Botany, Chinese Academy of Sciences; Chinese Academy of Agricultural Sciences; Department of Plant Biology, Carnegie Institution; Yonsei University, Korea; RIKEN Advanced Science Institute, Japan.

The Carnegie Institution for Science (www.CIW.edu) has been a pioneering force in basic scientific research since 1902. It is a private, nonprofit organization with six research departments throughout the U.S. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Zhi-Yong Wang | EurekAlert!
Further information:
http://www.ciw.edu

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>