Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Antagonistic genes control rice growth

Scientists at the Carnegie Institution, with colleagues,* have found that a plant steroid prompts two genes to battle each other—one suppresses the other to ensure that leaves grow normally in rice and the experimental plant Arabidopsis thaliana, a relative of mustard. The results, published in the December 15, 2009, issue of The Plant Cell, have important implications for understanding how to manipulate crop growth and yield.

In plants, steroid levels reflect environmental and internal signals and control many processes. Steroid hormones called brassinosteroids (BRs) start their action on the surface of the cell and, through a molecular relay, send signals into the cell's nucleus to turn on or off specific genes, particularly those that are critical to regulating plant growth and development. Although a lot has been discovered about how the steroid affects genes in Arabidopsis, much less was known in crop plants such as rice.

Co-author Zhi-Yong Wang at Carnegie's Department of Plant Biology explained the work: "We knew that the steroid is very important for activating genes that control cell growth in Arabidopsis as well as in rice. One of the most sensitive responses to the steroid is leaf bending in rice, caused by expansion of the upper cells at the joint between leaf blade and leaf sheath. We wanted to determine how the steroid functioned in rice. We found that the steroid affects two genes encoding (or producing) proteins that turn other genes on or off; they are called transcription factors. In rice, when a gene called Increased Leaf Inclination1 (ILI1) is turned on, it causes leaf bending. Interestingly, we found that the ILI1 protein also binds to another transcription factor, called IBH1, and inhibits its function. When there is too much ILI1 protein, the leaves bend excessively making the plant shaggy. When IBH1 level is high, cell growth is stopped at the joint and the rice is very erect, taking up less space. In normal rice plants the balance between ILI1 and IBH1 keeps growth in check."

This pair of genes provides a unique tool to control the leaf angle, which is important for crop yield because erect leaves improve light capture and allows rice plants to be planted at higher density for a higher yield per hectare.

Through a series of experiments, the researchers determined how the steroid and genes interact. They found that brassinosteroid oppositely regulate these genes—ILI1 was activated and IBH1 was repressed. As such, the steroid tips the balance between their protein products, ILI1 and IBH1, to initiate cell growth.

"It appears that the steroid causes the IBH1 genes to stop the production of IBH1 protein, and in the meantime increases the production of the ILI1 protein, which turns off IBH1's inhibition of cell growth. This ensures that the cell grows to just the right length according to the level of steroid," commented Wang.

The researchers performed similar experiments on the mustard, which showed that steroid interacted with the mustard genes the same way. "Since similar genes are doing the same thing in these different plants, this process is likely to be very old and found in many different higher plants. The more we learn about such mechanisms, the closer we will come to better engineering crops to feed a growing population," concluded Wang.

The work was supported by the National Science Foundation of China; The National Institute of Health; the Ministry of Education, Culture, Sports, Science and Technology of Japan; and the Carnegie Institution.

*Colleagues on the study are from the following institutions: Institute of Botany, Chinese Academy of Sciences; Chinese Academy of Agricultural Sciences; Department of Plant Biology, Carnegie Institution; Yonsei University, Korea; RIKEN Advanced Science Institute, Japan.

The Carnegie Institution for Science ( has been a pioneering force in basic scientific research since 1902. It is a private, nonprofit organization with six research departments throughout the U.S. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Zhi-Yong Wang | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>