Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New animal model may lead to treatments for common liver disease

Scientists at Texas Biomed have developed the laboratory opossum as a new animal model to study the most common liver disease in the nation – afflicting up to 15 million Americans – and for which there is no cure.

The condition, nonalcoholic steatohepatitis (NASH), resembles alcoholic liver disease, but occurs in people who drink little or no alcohol. The major feature of NASH is accumulation of fat in the liver, along with inflammation and functional damage. Most people with NASH feel well and are not aware that they have a liver problem.

Nevertheless, NASH can progress to cirrhosis, in which the liver is permanently damaged and no longer able to work properly. NASH-related cirrhosis is the fourth most common indication for liver transplantation in the U.S.

NASH affects 2 to 5 percent of Americans – roughly six million to 15 million people. An additional 15 to 30 percent of Americans have excess fat in their livers, but no inflammation or liver damage, a condition called "fatty liver" or the non-progressive form of nonalcoholic fatty liver disease (NAFLD).

The study, published in the July issue of the American Journal of Physiology-Gastrointestinal and Liver Physiology, was supported by the National Institutes of Health and the Robert J. Kleberg, Jr., and Helen C. Kleberg Foundation.

"This is the type of model in which to develop mechanism-based therapies," writes Geoffrey C Farrell, M.D., of the Australian National University Medical School in Canberra, in a journal editorial.

Both NASH and NAFLD are becoming more common, possibly because of the greater number of Americans with obesity and its important health complications, type 2 diabetes, high blood cholesterol levels, high blood pressure and other risk factors for heart attack and stroke. In the past 10 years, the prevalence of obesity has doubled in adults and tripled in children. It was previously reported by other scientists that the prevalence of NAFLD and NASH in a cohort of middle-aged patients in San Antonio is 46 percent and 12 percent, respectively.

"It now seems likely that genetic factors, such as those important for diabetes and high cholesterol levels, are what determines why a small proportion of those with fatty liver develop NASH and its complications of cirrhosis and liver cancer," said Farrell.

In the new study, high responding opossums developed elevated cholesterol and fatty liver disease when fed a high cholesterol and high fat diet, whereas low responding opossums did not. High responders carry a mutated ABCB4 gene, which affects their ability to secrete excess cholesterol from the liver into bile which, in turn, transports the cholesterol to the intestines for excretion from the body. As a consequence, opossums with the mutated gene accumulate cholesterol in the liver and ultimately in the blood.

"We showed that the fatty livers of high responders contain a tremendous amount of cholesterol," said first author Jeannie Chan, Ph.D., of Texas Biomed. "The opossum is a new animal model for investigating the mechanism by which cholesterol mediates liver injury, which will lead to a better understanding of the role of dietary cholesterol in the development of NASH."

Co-authors on the study included Rampratap S. Kushwaha, Ph.D., Jane F. VandeBerg, and John L. VandeBerg, Ph.D., all of Texas Biomed; and Francis E. Sharkey, M.D., of the UT Health Science Center San Antonio.

Texas Biomed, formerly the Southwest Foundation for Biomedical Research, is one of the world's leading independent biomedical research institutions dedicated to advancing health worldwide through innovative biomedical research. Located on a 200-acre campus on the northwest side of San Antonio, Texas, the Institute partners with hundreds of researchers and institutions around the world, targeting advances in the fight against AIDS, hepatitis, malaria, parasitic infections and a host of other infectious diseases, as well as cardiovascular disease, diabetes, obesity, cancer, psychiatric disorders, and problems of pregnancy.

For more information on Texas Biomed, go to, or call Joe Carey, Texas Biomed's Vice President for Public Affairs, at 210-258-9437.

Joseph Carey | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>