Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New animal model may lead to treatments for common liver disease

04.07.2012
Scientists at Texas Biomed have developed the laboratory opossum as a new animal model to study the most common liver disease in the nation – afflicting up to 15 million Americans – and for which there is no cure.

The condition, nonalcoholic steatohepatitis (NASH), resembles alcoholic liver disease, but occurs in people who drink little or no alcohol. The major feature of NASH is accumulation of fat in the liver, along with inflammation and functional damage. Most people with NASH feel well and are not aware that they have a liver problem.

Nevertheless, NASH can progress to cirrhosis, in which the liver is permanently damaged and no longer able to work properly. NASH-related cirrhosis is the fourth most common indication for liver transplantation in the U.S.

NASH affects 2 to 5 percent of Americans – roughly six million to 15 million people. An additional 15 to 30 percent of Americans have excess fat in their livers, but no inflammation or liver damage, a condition called "fatty liver" or the non-progressive form of nonalcoholic fatty liver disease (NAFLD).

The study, published in the July issue of the American Journal of Physiology-Gastrointestinal and Liver Physiology, was supported by the National Institutes of Health and the Robert J. Kleberg, Jr., and Helen C. Kleberg Foundation.

"This is the type of model in which to develop mechanism-based therapies," writes Geoffrey C Farrell, M.D., of the Australian National University Medical School in Canberra, in a journal editorial.

Both NASH and NAFLD are becoming more common, possibly because of the greater number of Americans with obesity and its important health complications, type 2 diabetes, high blood cholesterol levels, high blood pressure and other risk factors for heart attack and stroke. In the past 10 years, the prevalence of obesity has doubled in adults and tripled in children. It was previously reported by other scientists that the prevalence of NAFLD and NASH in a cohort of middle-aged patients in San Antonio is 46 percent and 12 percent, respectively.

"It now seems likely that genetic factors, such as those important for diabetes and high cholesterol levels, are what determines why a small proportion of those with fatty liver develop NASH and its complications of cirrhosis and liver cancer," said Farrell.

In the new study, high responding opossums developed elevated cholesterol and fatty liver disease when fed a high cholesterol and high fat diet, whereas low responding opossums did not. High responders carry a mutated ABCB4 gene, which affects their ability to secrete excess cholesterol from the liver into bile which, in turn, transports the cholesterol to the intestines for excretion from the body. As a consequence, opossums with the mutated gene accumulate cholesterol in the liver and ultimately in the blood.

"We showed that the fatty livers of high responders contain a tremendous amount of cholesterol," said first author Jeannie Chan, Ph.D., of Texas Biomed. "The opossum is a new animal model for investigating the mechanism by which cholesterol mediates liver injury, which will lead to a better understanding of the role of dietary cholesterol in the development of NASH."

Co-authors on the study included Rampratap S. Kushwaha, Ph.D., Jane F. VandeBerg, and John L. VandeBerg, Ph.D., all of Texas Biomed; and Francis E. Sharkey, M.D., of the UT Health Science Center San Antonio.

Texas Biomed, formerly the Southwest Foundation for Biomedical Research, is one of the world's leading independent biomedical research institutions dedicated to advancing health worldwide through innovative biomedical research. Located on a 200-acre campus on the northwest side of San Antonio, Texas, the Institute partners with hundreds of researchers and institutions around the world, targeting advances in the fight against AIDS, hepatitis, malaria, parasitic infections and a host of other infectious diseases, as well as cardiovascular disease, diabetes, obesity, cancer, psychiatric disorders, and problems of pregnancy.

For more information on Texas Biomed, go to www.TxBiomed.org, or call Joe Carey, Texas Biomed's Vice President for Public Affairs, at 210-258-9437.

Joseph Carey | EurekAlert!
Further information:
http://www.txbiomed.org

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>