Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New animal model may lead to treatments for common liver disease

04.07.2012
Scientists at Texas Biomed have developed the laboratory opossum as a new animal model to study the most common liver disease in the nation – afflicting up to 15 million Americans – and for which there is no cure.

The condition, nonalcoholic steatohepatitis (NASH), resembles alcoholic liver disease, but occurs in people who drink little or no alcohol. The major feature of NASH is accumulation of fat in the liver, along with inflammation and functional damage. Most people with NASH feel well and are not aware that they have a liver problem.

Nevertheless, NASH can progress to cirrhosis, in which the liver is permanently damaged and no longer able to work properly. NASH-related cirrhosis is the fourth most common indication for liver transplantation in the U.S.

NASH affects 2 to 5 percent of Americans – roughly six million to 15 million people. An additional 15 to 30 percent of Americans have excess fat in their livers, but no inflammation or liver damage, a condition called "fatty liver" or the non-progressive form of nonalcoholic fatty liver disease (NAFLD).

The study, published in the July issue of the American Journal of Physiology-Gastrointestinal and Liver Physiology, was supported by the National Institutes of Health and the Robert J. Kleberg, Jr., and Helen C. Kleberg Foundation.

"This is the type of model in which to develop mechanism-based therapies," writes Geoffrey C Farrell, M.D., of the Australian National University Medical School in Canberra, in a journal editorial.

Both NASH and NAFLD are becoming more common, possibly because of the greater number of Americans with obesity and its important health complications, type 2 diabetes, high blood cholesterol levels, high blood pressure and other risk factors for heart attack and stroke. In the past 10 years, the prevalence of obesity has doubled in adults and tripled in children. It was previously reported by other scientists that the prevalence of NAFLD and NASH in a cohort of middle-aged patients in San Antonio is 46 percent and 12 percent, respectively.

"It now seems likely that genetic factors, such as those important for diabetes and high cholesterol levels, are what determines why a small proportion of those with fatty liver develop NASH and its complications of cirrhosis and liver cancer," said Farrell.

In the new study, high responding opossums developed elevated cholesterol and fatty liver disease when fed a high cholesterol and high fat diet, whereas low responding opossums did not. High responders carry a mutated ABCB4 gene, which affects their ability to secrete excess cholesterol from the liver into bile which, in turn, transports the cholesterol to the intestines for excretion from the body. As a consequence, opossums with the mutated gene accumulate cholesterol in the liver and ultimately in the blood.

"We showed that the fatty livers of high responders contain a tremendous amount of cholesterol," said first author Jeannie Chan, Ph.D., of Texas Biomed. "The opossum is a new animal model for investigating the mechanism by which cholesterol mediates liver injury, which will lead to a better understanding of the role of dietary cholesterol in the development of NASH."

Co-authors on the study included Rampratap S. Kushwaha, Ph.D., Jane F. VandeBerg, and John L. VandeBerg, Ph.D., all of Texas Biomed; and Francis E. Sharkey, M.D., of the UT Health Science Center San Antonio.

Texas Biomed, formerly the Southwest Foundation for Biomedical Research, is one of the world's leading independent biomedical research institutions dedicated to advancing health worldwide through innovative biomedical research. Located on a 200-acre campus on the northwest side of San Antonio, Texas, the Institute partners with hundreds of researchers and institutions around the world, targeting advances in the fight against AIDS, hepatitis, malaria, parasitic infections and a host of other infectious diseases, as well as cardiovascular disease, diabetes, obesity, cancer, psychiatric disorders, and problems of pregnancy.

For more information on Texas Biomed, go to www.TxBiomed.org, or call Joe Carey, Texas Biomed's Vice President for Public Affairs, at 210-258-9437.

Joseph Carey | EurekAlert!
Further information:
http://www.txbiomed.org

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>