Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Andromeda Biotech: A Drug for Type 1 Diabetes

22.11.2011
Developed by Prof. Irun Cohen of the Weizmann Institute Meets Primary and Secondary Goals of Phase III Clinical Trials

Andromeda Biotech: A Drug for Type 1 Diabetes Developed by Prof. Irun Cohen of the Weizmann Institute Meets Primary and Secondary Goals of Phase III Clinical Trials

The clinical trial was random, regulated, double-blinded and broad-based. The drug was tested on 457 patients, aged 16-45, who had been diagnosed with Type 1 diabetes a short time before joining the trial. The trial took place in around 40 medical centers in Europe, Israel and South Africa. The patients in the trial were randomly assigned to one of two groups: One received the trial drug (DiaPep277®) through a subcutaneous injection once every three months, for a period of two years, while the control group was given a placebo in the same way. In addition, all of the patients received insulin as needed to stabilize their glucose levels.

DiaPep277® was invented by Prof. Irun Cohen and his team at the Weizmann Institute of Science. This unique peptide, containing 24 amino acids, is derived from the sequence of the human heat shock protein 60 (Hsp60). The peptide acts by modulating the immune system, preventing the destruction of the pancreatic cells that secrete insulin and preserving their natural function. Treatment of Type 1 diabetes patients with DiaPep277® may have several medical benefits: slowing the deterioration of the diseased tissue, improved metabolic control, a reduction in daily insulin requirements and fewer complications of diabetes.

During the trial, the ability of the patients’ pancreas to secrete insulin was tested. From an initial analysis of the results, it appears that the patients treated with the drug for a year or more had significantly higher pancreas function than those in the control group.

From the point of view of safety, no significant differences were found in the incidence of side effects between the treated and control groups.

Additional data on the drug’s efficacy and safety were collected and evaluated, and these will be presented in a final report on the trial, which will be completed in several months.

Andromeda Biotech is now planning to conduct another trial, to try to reproduce these results. Recruitment of patients into this trial is expected to be finalized in the second quarter of 2012. The research and development team of Andromeda Biotech emphasize that the drug is still under development, and there is no absolute guarantee that the drug will eventually be marketed.

Prof. Irun Cohen’s research is supported by the Laszlo N. Tauber Family Foundation

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,700 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

Weizmann Institute news releases are posted on the World Wide Web at http://wis-wander.weizmann.ac.il, and are also available at http://www.eurekalert.org.

Yivsam Azgad | idw
Further information:
http://wis-wander.weizmann.ac.il

Further reports about: Andromeda Biotech Diabetes Drug Delivery Weizmann amino acid

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>