Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Analysis of Lake Washington microbes shows the power of metagenomic approaches

19.08.2008
Today's powerful sequencing machines can rapidly read the genomes of entire communities of microbes, but the challenge is to extract meaningful information from the jumbled reams of data.

In a paper appearing in Nature Biotechnology August 17, a collaboration headed by researchers at the University of Washington and the U.S. Department of Energy Joint Genome Institute (DOE JGI) describes a novel approach for extracting single genomes and discerning specific microbial capabilities from mixed community ("metagenomic") sequence data.

For the first time, using an enrichment technique applied to microbial community samples, the research team explored the sediments in Lake Washington, bordering Seattle, WA and characterized biochemical pathways associated with nitrogen cycling and methane utilization, important for understanding methane generation and consumption by microbes. Methane is both a greenhouse gas and a potential energy source.

"Even if you have lots of sequence, for complex communities it still doesn't tell you which organism is responsible for which function," said the paper's senior author Ludmila Chistoserdova, a microbiologist at the University of Washington. "This publication presents an approach, via simplification and targeted metagenomic sequencing, of how you can go after the function in the environment."

Chistoserdova and colleagues study microbes that oxidize single-carbon compounds such as methane, methanol and methylated amines, which are compounds contributing to the greenhouse effect and are part of the global carbon cycle.

"To utilize these single-carbon compounds, organisms employ very specialized metabolism," said Chistoserdova. "We suspect that in the environment, there are novel versions of this metabolism, and possibly completely novel pathways."

Most of the microbes that oxidize single-carbon compounds are unculturable and therefore unknown, as are the vast majority of microbes on Earth. To find species of interest, the researchers sequenced microbial communities from Lake Washington sediment samples, Chistoserdova said, because lake sediment is known to be a site of high methane consumption. However, these sediment samples contained over 5,000 species of microbes performing a complex, interconnected array of biochemical tasks.

To enrich the samples for the microbes of interest, the researchers adapted a technique called stable isotope probing. This is the first time the technique has been used on a microbial community, Chistoserdova said. The researchers used five different single-carbon compounds labeled with a heavy isotope of carbon, and fed each compound to a separate sediment sample. The microbes that could consume the compound incorporated the labeled carbon into their DNA, Chistoserdova said, while organisms that couldn't use the compound did not incorporate the label. The labeled DNA was then separated out and sequenced. In this way, microbial "subsamples" were produced that were highly enriched for organisms that could metabolize methane, methanol, methylated amines, formaldehyde and formate.

The functionally enriched samples contained far fewer microbes than the total sample, Chistoserdova said. The sample that was fed methylated amines was simple enough that the group was able to extract the entire genome of a novel microbe, Methylotenera mobilis, that normally comprises less than half a percent of the community, but appears to be a first responder to methylated amines in the environment. The researchers were able to construct much of M. mobilis' biochemistry, and predict that it is also involved in nitrogen cycling, demonstrating the utility of metagenomic analysis.

The DOE JGI performed the sequencing and assembly of these complex metagenomic data sets. The complexity of the community's sequence samples created new challenges for genome assembly. "It is very important for metagenomic assemblies to rely on high-quality reads," said Alla Lapidus, microbial geneticist at the DOE JGI and co-author on the paper. If some of the sequence is of low quality, she said, it can lead to errors in assembly and gene annotation.

Because of the need for higher quality control, Lapidus said, the DOE JGI developed a new quality control approach that involves a computer tool called LUCY to trim out low-quality sequence in combination with the Paracel Genome Assembler, which appeared to be more appropriate for metagenomic assemblies. This approach was pioneered on the Lake Washington project, Lapidus said, and due to its superior results it is now the standard metagenomic assembly method at the DOE JGI.

"The DOE JGI's unique Integrated Microbial Genomics with Microbiome Samples (IMG/M) [http://img.jgi.doe.gov/m] data management system was used for detailed annotation, and was instrumental for efficient comparative analysis and metabolic reconstruction of the samples," Lapidus said.

Michael Galperin, a microbial geneticist at the National Center for Biotechnology Information at the National Institutes of Health, who was not involved in the study, said in an email that the paper describes "an interesting novel approach" and the results "constitute a significant advance in the emerging discipline of metagenomics."

"I think other people can use the same approach in different environments, as long as they have an enrichment technique," Chistoserdova said. "For us this work is just the beginning, because now we will be using this metagenomic sequence as a scaffold for downstream experiments in our lake."

David Gilbert | EurekAlert!
Further information:
http://www.lbl.gov
http://www.jgi.doe.gov/

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Climate change: In their old age, trees still accumulate large quantities of carbon

17.08.2017 | Earth Sciences

Modern genetic sequencing tools give clearer picture of how corals are related

17.08.2017 | Life Sciences

Superconductivity research reveals potential new state of matter

17.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>