Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An embryonic cell’s fate is sealed by the speed of a signal

05.08.2014

When embryonic cells get the signal to specialize the call can come quickly. Or it can arrive slowly. Now, new research from Rockefeller University suggests the speed at which a cell in an embryo receives that signal has an unexpected influence on that cell’s fate. Until now, only concentration of the chemical signals was thought to matter in determining if the cell would become, for example, muscle, skin, brain or bone.

“It turns out that if ramped up slowly enough an otherwise potent signal elicits no response from the receiving cells. Meanwhile, a pulsing, on-off signal appears to have a stronger effect than a constant one,” says researcher Ali Brivanlou, Robert and Harriet Heilbrunn Professor and head of the Laboratory of Molecular Vertebrate Embryology. This research is the latest collaboration between Brivanlou and Eric Siggia, Viola Ward Brinning and Elbert Calhoun Brinning Professor at Rockefeller’s Center for Studies in Physics and Biology.


Tempting fate. To visualize cells’ responses to the signals that ultimately lead them to choose a fate, the researchers engineered a protein involved in this response, Smad4, to glow. In response to a pulse of signal molecules, Smad4 moves into the dark nuclei of the cells, causing them to glow briefly.

“Until now, it has not been feasible to test how speed or other temporal dynamics affect a cell’s response to a signal. However, by adapting technology that allows for very precise control over these aspects, we found unequivocal evidence that signal level alone does not determine a cell’s fate. Its presentation is also extremely important,” Siggia says.

Together, the team dubbed their discovery “speed fating.” Their work will be published in August in Developmental Cell.

Biologists know a cell determines its location in an embryo and, as a result, its future role, based on chemical cues from its neighbors. About 50 years ago, the developmental biologist Lewis Wolpert proposed that this determination hinges on the concentration of the signal to which a cell is exposed: Go above a certain threshold and you get one fate, below and you get a second. His proposal is known as the French flag model, after a tri-color graph used to represent three cell fates based on those cells’ positions with respect to the source of the signal.

Prior work from Brivanlou and Siggia had cast doubt on the sole importance of concentration. Using a common developmental signaling pathway known as TGF-β, the team documented what is known as an adaptive response from cells exposed to TGF-β signaling molecules. This response peaked then declined over time, even though the signaling molecules remained present. (Think of how a constant noise eventually blends into the background.) If concentration was the sole factor responsible for a response, then the response should have continued as long as the signal was present.

To follow up on this work, Benoit Sorre, a former Rockefeller postdoc now at the University of Paris Diderot, adapted a system that makes use of miniaturized networks of pipes, pumps, valves and sample chambers all under computer control. For experiments, he teamed up with Aryeh Warmflash, the postdoc who lead the previous TGF-β work. Together, they worked with mouse cells that have the potential to differentiate into muscle, or cartilage and bone. Progenitor cells like these, which can differentiate into a limited set of tissues, are the offspring of stem cells. In experiments using Sorre’s new system, the researchers exposed these progenitor cells to signaling molecules from the TGF-β pathway, and then recorded the cells’ responses to see if the signal activated the pathway that leads them to choose a fate.

Sorre and Warmflash started with a continuous signal. As Warmflash’s previous work suggested, this finger-stuck-on-the-buzzer approach did not produce a continuous response from the cells. Instead, the response declined. A second set of tests showed a series of brief pulses of signal produced a greater response than one continuous signal.

Gradually increasing the concentration of the signal, however, appeared to have the opposite effect. The researchers ramped up the concentration of the signal over periods as brief as five hours or as long as 40 hours. The longer the period and the slower the rate of increase, the weaker the cells’ response. The cells subjected to a 40-hour run barely registered at all.

Based on these experiments, the team formulated a mathematical model to describe how a cell in an embryo may infer its position in relation to the source of the signal. In this way, the research offers a new take on the French flag model: It is still true that the fates of three cells can be mapped out based on their position, but the cells appear to arrive at these fates more rapidly than previously thought, thanks to the adaptive response that takes into account both the level and speed of a signal.

“This finding is another instance of a productive collaboration between biologists and physicists. Neither group, biologists or physicists, could have realized this result working alone,” Siggia says.

Zach Veilleux | Eurek Alert!
Further information:
http://newswire.rockefeller.edu/2014/08/04/an-embryonic-cells-fate-is-sealed-by-the-speed-of-a-signal/

Further reports about: Biology Laboratory Molecular evidence experiments offspring pathway

More articles from Life Sciences:

nachricht Team pinpoints genes that make plant stem cells, revealing origin of beefsteak tomatoes
26.05.2015 | Cold Spring Harbor Laboratory

nachricht DNA double helix does double duty in assembling arrays of nanoparticles
26.05.2015 | DOE/Brookhaven National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Analytical lamps monitor air pollution in cities

26.05.2015 | Ecology, The Environment and Conservation

DNA double helix does double duty in assembling arrays of nanoparticles

26.05.2015 | Life Sciences

Turn That Defect Upside Down

26.05.2015 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>