Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An embryonic cell’s fate is sealed by the speed of a signal

05.08.2014

When embryonic cells get the signal to specialize the call can come quickly. Or it can arrive slowly. Now, new research from Rockefeller University suggests the speed at which a cell in an embryo receives that signal has an unexpected influence on that cell’s fate. Until now, only concentration of the chemical signals was thought to matter in determining if the cell would become, for example, muscle, skin, brain or bone.

“It turns out that if ramped up slowly enough an otherwise potent signal elicits no response from the receiving cells. Meanwhile, a pulsing, on-off signal appears to have a stronger effect than a constant one,” says researcher Ali Brivanlou, Robert and Harriet Heilbrunn Professor and head of the Laboratory of Molecular Vertebrate Embryology. This research is the latest collaboration between Brivanlou and Eric Siggia, Viola Ward Brinning and Elbert Calhoun Brinning Professor at Rockefeller’s Center for Studies in Physics and Biology.


Tempting fate. To visualize cells’ responses to the signals that ultimately lead them to choose a fate, the researchers engineered a protein involved in this response, Smad4, to glow. In response to a pulse of signal molecules, Smad4 moves into the dark nuclei of the cells, causing them to glow briefly.

“Until now, it has not been feasible to test how speed or other temporal dynamics affect a cell’s response to a signal. However, by adapting technology that allows for very precise control over these aspects, we found unequivocal evidence that signal level alone does not determine a cell’s fate. Its presentation is also extremely important,” Siggia says.

Together, the team dubbed their discovery “speed fating.” Their work will be published in August in Developmental Cell.

Biologists know a cell determines its location in an embryo and, as a result, its future role, based on chemical cues from its neighbors. About 50 years ago, the developmental biologist Lewis Wolpert proposed that this determination hinges on the concentration of the signal to which a cell is exposed: Go above a certain threshold and you get one fate, below and you get a second. His proposal is known as the French flag model, after a tri-color graph used to represent three cell fates based on those cells’ positions with respect to the source of the signal.

Prior work from Brivanlou and Siggia had cast doubt on the sole importance of concentration. Using a common developmental signaling pathway known as TGF-β, the team documented what is known as an adaptive response from cells exposed to TGF-β signaling molecules. This response peaked then declined over time, even though the signaling molecules remained present. (Think of how a constant noise eventually blends into the background.) If concentration was the sole factor responsible for a response, then the response should have continued as long as the signal was present.

To follow up on this work, Benoit Sorre, a former Rockefeller postdoc now at the University of Paris Diderot, adapted a system that makes use of miniaturized networks of pipes, pumps, valves and sample chambers all under computer control. For experiments, he teamed up with Aryeh Warmflash, the postdoc who lead the previous TGF-β work. Together, they worked with mouse cells that have the potential to differentiate into muscle, or cartilage and bone. Progenitor cells like these, which can differentiate into a limited set of tissues, are the offspring of stem cells. In experiments using Sorre’s new system, the researchers exposed these progenitor cells to signaling molecules from the TGF-β pathway, and then recorded the cells’ responses to see if the signal activated the pathway that leads them to choose a fate.

Sorre and Warmflash started with a continuous signal. As Warmflash’s previous work suggested, this finger-stuck-on-the-buzzer approach did not produce a continuous response from the cells. Instead, the response declined. A second set of tests showed a series of brief pulses of signal produced a greater response than one continuous signal.

Gradually increasing the concentration of the signal, however, appeared to have the opposite effect. The researchers ramped up the concentration of the signal over periods as brief as five hours or as long as 40 hours. The longer the period and the slower the rate of increase, the weaker the cells’ response. The cells subjected to a 40-hour run barely registered at all.

Based on these experiments, the team formulated a mathematical model to describe how a cell in an embryo may infer its position in relation to the source of the signal. In this way, the research offers a new take on the French flag model: It is still true that the fates of three cells can be mapped out based on their position, but the cells appear to arrive at these fates more rapidly than previously thought, thanks to the adaptive response that takes into account both the level and speed of a signal.

“This finding is another instance of a productive collaboration between biologists and physicists. Neither group, biologists or physicists, could have realized this result working alone,” Siggia says.

Zach Veilleux | Eurek Alert!
Further information:
http://newswire.rockefeller.edu/2014/08/04/an-embryonic-cells-fate-is-sealed-by-the-speed-of-a-signal/

Further reports about: Biology Laboratory Molecular evidence experiments offspring pathway

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>