Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Amazonian amphibian diversity traced to Andes

10.03.2009
Study of poison frogs the first to show that the Andes Mountains have been a major source of diversity for the Amazon basin

Colorful poison frogs in the Amazon owe their great diversity to ancestors that leapt into the region from the Andes Mountains several times during the last 10 million years, a new study from The University of Texas at Austin suggests.

This is the first study to show that the Andes have been a major source of diversity for the Amazon basin, one of the largest reservoirs of biological diversity on Earth. The finding runs counter to the idea that Amazonian diversity is the result of evolution only within the tropical forest itself.

"Basically, the Amazon basin is a 'melting pot' for South American frogs," says graduate student Juan Santos, lead author of the study. "Poison frogs there have come from multiple places of origin, notably the Andes Mountains, over many millions of years. We have shown that you cannot understand Amazonian biodiversity by looking only in the basin. Adjacent regions have played a major role."

Santos and Dr. David Cannatella, professor of integrative biology, published their findings this month in the journal PLoS Biology.

It has been assumed that much of the evolution of biodiversity in the Amazon basin occurred over the last one to two million years, a mere snapshot in time.

Santos and Cannatella peered about 45 million years into the past using novel biogeographical techniques to create a deep evolutionary history of poison frogs in space and time. Because of the lack of an extensive fossil record for the tropical forest, their work used DNA sequences to discover the frogs' evolutionary history.

The poison frogs, or dendrobatids, are diverse and widely distributed across the Neotropics, an area that includes Central and South America. The scientists created an evolutionary tree, or phylogeny, using 223 of the 353 species of poison frogs known from throughout this region.

In analyzing the evolutionary relationships among the poison frogs, they discovered that Amazonian diversity is the result of at least 14 dispersals of ancestral frogs into the region beginning about 23 million years ago.

All living Amazonian poison frogs evolved from these ancestors, most of which (11 dispersals) came from the Andes Mountains.

The Amazon basin has changed dramatically over that long time. A large inland system of water has come and gone, the Andes Mountains started their uplift (about 15 million years ago) and the Amazon River was formed (about nine million years ago).

Most of the frog dispersals from the Andes occurred between one and seven million years ago, when the modern tropical rainforest of the Amazon River basin was forming.

"There was a repeated dispersal of frogs from the foothills of the Andes after the extensive inland wetlands retreated from the Amazon," says Santos.

These frogs then evolved into about 70 species found today in the Amazon basin.

The scientists also discovered that frogs have historically immigrated out of the Amazon basin to adjacent areas, and to and from other regions within the Neotropics.

Evolution and diversification of the poison frogs is ongoing, especially in the Amazon rainforest, the Chocó (a narrow region of tropical forest along the northwest Pacific Coast of South America) and in adjacent Central America.

Cannatella says many other tropical plants and animals in the Amazon may share this more complex geographical and temporal history with the poison frogs.

"The Amazon rainforest is not just gradually accumulating diversity over time," says Cannatella. "Ancestral frog species moved into and out of the area, and we can predict that other organisms restricted to these wet tropical forests may show a similar pattern of dispersal, evolution and diversification."

Lee Clippard | EurekAlert!
Further information:
http://www.utexas.edu

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>