Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Amazonian amphibian diversity traced to Andes

Study of poison frogs the first to show that the Andes Mountains have been a major source of diversity for the Amazon basin

Colorful poison frogs in the Amazon owe their great diversity to ancestors that leapt into the region from the Andes Mountains several times during the last 10 million years, a new study from The University of Texas at Austin suggests.

This is the first study to show that the Andes have been a major source of diversity for the Amazon basin, one of the largest reservoirs of biological diversity on Earth. The finding runs counter to the idea that Amazonian diversity is the result of evolution only within the tropical forest itself.

"Basically, the Amazon basin is a 'melting pot' for South American frogs," says graduate student Juan Santos, lead author of the study. "Poison frogs there have come from multiple places of origin, notably the Andes Mountains, over many millions of years. We have shown that you cannot understand Amazonian biodiversity by looking only in the basin. Adjacent regions have played a major role."

Santos and Dr. David Cannatella, professor of integrative biology, published their findings this month in the journal PLoS Biology.

It has been assumed that much of the evolution of biodiversity in the Amazon basin occurred over the last one to two million years, a mere snapshot in time.

Santos and Cannatella peered about 45 million years into the past using novel biogeographical techniques to create a deep evolutionary history of poison frogs in space and time. Because of the lack of an extensive fossil record for the tropical forest, their work used DNA sequences to discover the frogs' evolutionary history.

The poison frogs, or dendrobatids, are diverse and widely distributed across the Neotropics, an area that includes Central and South America. The scientists created an evolutionary tree, or phylogeny, using 223 of the 353 species of poison frogs known from throughout this region.

In analyzing the evolutionary relationships among the poison frogs, they discovered that Amazonian diversity is the result of at least 14 dispersals of ancestral frogs into the region beginning about 23 million years ago.

All living Amazonian poison frogs evolved from these ancestors, most of which (11 dispersals) came from the Andes Mountains.

The Amazon basin has changed dramatically over that long time. A large inland system of water has come and gone, the Andes Mountains started their uplift (about 15 million years ago) and the Amazon River was formed (about nine million years ago).

Most of the frog dispersals from the Andes occurred between one and seven million years ago, when the modern tropical rainforest of the Amazon River basin was forming.

"There was a repeated dispersal of frogs from the foothills of the Andes after the extensive inland wetlands retreated from the Amazon," says Santos.

These frogs then evolved into about 70 species found today in the Amazon basin.

The scientists also discovered that frogs have historically immigrated out of the Amazon basin to adjacent areas, and to and from other regions within the Neotropics.

Evolution and diversification of the poison frogs is ongoing, especially in the Amazon rainforest, the Chocó (a narrow region of tropical forest along the northwest Pacific Coast of South America) and in adjacent Central America.

Cannatella says many other tropical plants and animals in the Amazon may share this more complex geographical and temporal history with the poison frogs.

"The Amazon rainforest is not just gradually accumulating diversity over time," says Cannatella. "Ancestral frog species moved into and out of the area, and we can predict that other organisms restricted to these wet tropical forests may show a similar pattern of dispersal, evolution and diversification."

Lee Clippard | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>