Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


With Their Amazing Necks, Ants Don’t Need “High Hopes” to Do Heavy Lifting

Ants can lift up to 5,000 times their own body weight, new study suggests

High hopes may help move a rubber tree plant (as the old song goes), but the real secret to the ant’s legendary strength may lie in its tiny neck joint.

Micro-CT scans of an Allegheny mound ant. Ohio State University engineers studied the ant's neck region, shown in more detail to the right. Images courtesy of Ohio State University.

In the Journal of Biomechanics, researchers report that the neck joint of a common American field ant can withstand pressures up to 5,000 times the ant’s weight.

“Ants are impressive mechanical systems—astounding, really,” said Carlos Castro, assistant professor of mechanical and aerospace engineering at The Ohio State University. “Before we started, we made a somewhat conservative estimate that they might withstand 1,000 times their weight, and it turned out to be much more.”

The engineers are studying whether similar joints might enable future robots to mimic the ant’s weight-lifting ability on earth and in space.

Other researchers have long observed ants in the field and guessed that they could hoist a hundred times their body weight or more, judging by the payload of leaves or prey that they carried. Castro and his colleagues took a different approach.

They took the ants apart.

“As you would in any engineering system, if you want to understand how something works, you take it apart,” he said. “That may sound kind of cruel in this case, but we did anesthetize them first.”

The engineers examined the Allegheny mound ant (Formica exsectoides) as if it were a device that they wanted to reverse-engineer: they tested its moving parts and the materials it is made of.

They chose this particular species because it’s common in the eastern United States and could easily be obtained from the university insectary. It’s an average field ant that is not particularly known for it’s lifting ability.

They imaged ants with electron microscopy and X-rayed them with micro-computed tomography (micro-CT) machines. They placed the ants in a refrigerator to anesthetize them, then glued them face-down in a specially designed centrifuge to measure the force necessary to deform the neck and eventually rupture the head from the body.

The centrifuge worked on the same principle as a common carnival ride called “the rotor.” In the rotor, a circular room spins until centrifugal force pins people to the wall and the floor drops out. In the case of the ants, their heads were glued in place on the floor of the centrifuge, so that as it spun, the ants’ bodies would be pulled outward until their necks ruptured.

The centrifuge spun up to hundreds of rotations per second, each increase in speed exerting more outward force on the ant. At forces corresponding to 350 times the ants’ body weight, the neck joint began to stretch and the body lengthened. The ants’ necks ruptured at forces of 3,400-5,000 times their average body weight.

Micro-CT scans revealed the soft tissue structure of the neck and its connection to the hard exoskeleton of the head and body. Electron microscopy images revealed that each part of the head-neck-chest joint was covered in a different texture, with structures that looked like bumps or hairs extending from different locations.

“Other insects have similar micro-scale structures, and we think that they might play some kind of mechanical role,” Castro said. “They might regulate the way that the soft tissue and hard exoskeleton come together, to minimize stress and optimize mechanical function. They might create friction, or brace one moving part against the other.”

Another key feature of the design seems to be the interface between the soft material of the neck and the hard material of the head. Such transitions usually create large stress concentrations, but ants have a graded and gradual transition between materials that gives enhanced performance—another design feature that could prove useful in man-made designs.

“Now that we understand the limits of what this particular ant can withstand and how it behaves mechanically when it’s carrying a load, we want to understand how it moves. How does it hold its head? What changes when the ant carries loads in different directions?”

One day, this research could lead to micro-sized robots that combine soft and hard parts, as the ant’s body does. Much work in robotics today involves assembling small, autonomous devices that can work together.

But a difficult problem will emerge if the researchers try to create large robots based on the same design, Castro explained.

Ants are super-strong on a small scale because their bodies are so light. Inside their hard exoskeletons, their muscles don’t have to provide much support, so they are free to apply all their strength to lifting other objects. Humans, in contrast, carry comparatively heavy loads due to our body weight. With our muscles supporting our body weight, we don’t have as much strength left over to lift other objects.

On a human-sized scale, though, ants are overcome by basic physics. Their weight increases with their overall volume (dimensions cubed), while the strength of their muscles only increases with surface area (dimensions squared). So a human-sized ant, were it to exist outside of a horror movie, would likely not be so successful in carrying extreme loads at a human scale.

A large robot based on that design might be able to carry and tow cargo in microgravity, though, so it’s possible that we may one day employ giant robot ants in space, “or, at least, something inspired by ants,” Castro said.

Meanwhile, the engineers will study the ant’s muscles closely—perhaps using magnetic resonance imaging. Computer simulations will also help answer the question of how to scale up similar structures.

Blaine Lilly, associate professor of mechanical and aerospace engineering, began this work with former student Vienny Nguyen. Nguyen earned her master’s degree with this project, and is now a robotics engineer at Johnson Space Center, where she is helping to design NASA’s Valkyrie robot for the DARPA Robotics Challenge. Ohio State undergraduate student Hiromi Tsuda recently joined Castro’s team, and she is analyzing the ant’s surface textures in more detail. Castro and Lilly have also begun collaborations with Noriko Katsube, also a professor of mechanical and aerospace engineering, and an expert in mechanical modeling of biomaterials.

Funding for this work came from Ohio State’s Institute for Materials Research and Nguyen’s National Science Foundation graduate research fellowship. Computing resources were provided by the Ohio Supercomputer Center; structural modeling software support by Simpleware Ltd.; and micro-CT by the laboratory of Richard Hart, professor and chair of the Department of Biomedical Engineering at Ohio State.

Contact: Carlos Castro, (614) 292-2662;
Written by Pam Frost Gorder, (614) 292-9475;
Editor's note: Images are available from Pam Frost Gorder.

Pam Frost Gorder | EurekAlert!
Further information:

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Reliable in-line inspections of high-strength automotive body parts within seconds

Nondestructive material testing (NDT) is a fast and effective way to analyze the quality of a product during the manufacturing process. Because defective materials can lead to malfunctioning finished products, NDT is an essential quality assurance measure, especially in the manufacture of safety-critical components such as automotive B-pillars. NDT examines the quality without damaging the component or modifying the surface of the material. At this year's Blechexpo trade fair in Stuttgart, Fraunhofer IZFP will have an exhibit that demonstrates the nondestructive testing of high-strength automotive body parts using 3MA. The measurement results are available in a matter of seconds.

To minimize vehicle weight and fuel consumption while providing the highest level of crash safety, automotive bodies are reinforced with elements made from...

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

Im Focus: Physicists shrink particle accelerator

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio...

Im Focus: Simple detection of magnetic skyrmions

New physical effect: researchers discover a change of electrical resistance in magnetic whirls

At present, tiny magnetic whirls – so called skyrmions – are discussed as promising candidates for bits in future robust and compact data storage devices. At...

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

Unexpected information about Earth's climate history from Yellow River sediment

09.10.2015 | Earth Sciences

Single atom alloy platinum-copper catalysts cut costs, boost green technology

09.10.2015 | Life Sciences

Indefatigable Hearing

09.10.2015 | Life Sciences

More VideoLinks >>>