Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Alzheimer mice: Microglia cells are neither involved in formation nor clearance of amyloid deposits

19.10.2009
In a study published in Nature Neuroscience Stefan Grathwohl and the team of Mathias Jucker (Hertie-Institute for Clinical Brain Research, University of Tübingen) managed, in collaboration with the team of Frank Heppner (Department of Neuropathology, Charité-Universitätsmedizin Berlin), to develop a new transgenic mouse model of Alzheimer's disease, in whith, microglia cells can be nearly completely ablated. This was prerequisite to go one step further: The scientists analyzed what effect the ablation of microglia cells had on amyloid deposits in the mouse brains. The surprising result: Microglia cells are neither involved in the formation nor in the clearance of amyloid deposits.

In the brains of Alzheimer patients deposits of patholgical amyloid-beta protein, so-called amyloid plaques, are found. Since amyloid-beta protein plays a key role in the pathogenesis of Alzheimer's disease, research on the formation and the clearance of amyloid-beta protein is crucial for a further understanding of the disease and therefore an important prerequisite for new approaches to the treatment of Morbus Alzheimer.

Microglia cells are phagocytes (scavenger cells) that exercise monitoring functions in the brain. It has been known for a long time that in Alzheimer brains an increased clustering of microglia cells are found in immediate vicinity to amyloid plaques. Thus, microglia cells were, until now, assumed to be involved in the clearance of amyloid deposits.

In collaboration with colleagues in Berlin the scientists from Tübingen managed to develop a transgenic mouse model in which microglia cells can, for the first time, be nearly completely removed (95%). This was done by introducing a so-called suicide gene into microglia cells and the administration of pharmaceutical agents which led to a systematic death of the cells.

Surprisingly and against all predictions, the ablation of microglia had, however, no effect on the amount of amyloid deposits. The fact whether the microglia cells were eliminated before or after the formation of amyloid-beta protein deposits made no difference. From cell culture experiments it is known that, in principle, microglia cells do have the ability to reduce amyloid plaques. The reason why this effect does not occur in the brains of the mouse models will now be addressed in future studies. The answer to this question could pave the way to a new therapeutic approach for Alzheimer's disease.

Title of the original publication:
Formation and maintenance of beta-amyloid plaques in Alzheimer's disease in the absence of microglia

Stefan A Grathwohl, Roland E Kälin, Tristan Bolmont, Stefan Prokop, Georg Winkelmann, Stephan A Kaeser, Jörg Odenthal, Rebecca Radde, Therese Eldh, Sam Gandy, Adriano Aguzzi, Matthias Staufenbiel8, Paul M Mathews, Hartwig Wolburg, Frank L Heppner, Mathias Jucker

Nature Neuroscience, in press 2009.
http://dx.doi.org/10.1038/nn.2432
Contact
Universitätsklinikum Tübingen
Zentrum für Neurologie
Hertie-Institut für klinische Hirnforschung (HIH)
Professor Mathias Jucker
Telefon: 07071-29-8 68 63
Mail: mathias.jucker@uni-tuebingen.de
Kirstin Ahrens
Pressereferentin Hertie-Institut für klinische Hirnforschung (HIH)
Telefon: 07073-500 724
Mobil: 0173-300 53 96
kirstin.ahrens@t-online.de

Kirstin Ahrens | idw
Further information:
http://www-hih-tuebingen.de
http://dx.doi.org/10.1038/nn.2432

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

Shape matters when light meets atom

05.12.2016 | Physics and Astronomy

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>