Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Alzheimer mice: Microglia cells are neither involved in formation nor clearance of amyloid deposits

19.10.2009
In a study published in Nature Neuroscience Stefan Grathwohl and the team of Mathias Jucker (Hertie-Institute for Clinical Brain Research, University of Tübingen) managed, in collaboration with the team of Frank Heppner (Department of Neuropathology, Charité-Universitätsmedizin Berlin), to develop a new transgenic mouse model of Alzheimer's disease, in whith, microglia cells can be nearly completely ablated. This was prerequisite to go one step further: The scientists analyzed what effect the ablation of microglia cells had on amyloid deposits in the mouse brains. The surprising result: Microglia cells are neither involved in the formation nor in the clearance of amyloid deposits.

In the brains of Alzheimer patients deposits of patholgical amyloid-beta protein, so-called amyloid plaques, are found. Since amyloid-beta protein plays a key role in the pathogenesis of Alzheimer's disease, research on the formation and the clearance of amyloid-beta protein is crucial for a further understanding of the disease and therefore an important prerequisite for new approaches to the treatment of Morbus Alzheimer.

Microglia cells are phagocytes (scavenger cells) that exercise monitoring functions in the brain. It has been known for a long time that in Alzheimer brains an increased clustering of microglia cells are found in immediate vicinity to amyloid plaques. Thus, microglia cells were, until now, assumed to be involved in the clearance of amyloid deposits.

In collaboration with colleagues in Berlin the scientists from Tübingen managed to develop a transgenic mouse model in which microglia cells can, for the first time, be nearly completely removed (95%). This was done by introducing a so-called suicide gene into microglia cells and the administration of pharmaceutical agents which led to a systematic death of the cells.

Surprisingly and against all predictions, the ablation of microglia had, however, no effect on the amount of amyloid deposits. The fact whether the microglia cells were eliminated before or after the formation of amyloid-beta protein deposits made no difference. From cell culture experiments it is known that, in principle, microglia cells do have the ability to reduce amyloid plaques. The reason why this effect does not occur in the brains of the mouse models will now be addressed in future studies. The answer to this question could pave the way to a new therapeutic approach for Alzheimer's disease.

Title of the original publication:
Formation and maintenance of beta-amyloid plaques in Alzheimer's disease in the absence of microglia

Stefan A Grathwohl, Roland E Kälin, Tristan Bolmont, Stefan Prokop, Georg Winkelmann, Stephan A Kaeser, Jörg Odenthal, Rebecca Radde, Therese Eldh, Sam Gandy, Adriano Aguzzi, Matthias Staufenbiel8, Paul M Mathews, Hartwig Wolburg, Frank L Heppner, Mathias Jucker

Nature Neuroscience, in press 2009.
http://dx.doi.org/10.1038/nn.2432
Contact
Universitätsklinikum Tübingen
Zentrum für Neurologie
Hertie-Institut für klinische Hirnforschung (HIH)
Professor Mathias Jucker
Telefon: 07071-29-8 68 63
Mail: mathias.jucker@uni-tuebingen.de
Kirstin Ahrens
Pressereferentin Hertie-Institut für klinische Hirnforschung (HIH)
Telefon: 07073-500 724
Mobil: 0173-300 53 96
kirstin.ahrens@t-online.de

Kirstin Ahrens | idw
Further information:
http://www-hih-tuebingen.de
http://dx.doi.org/10.1038/nn.2432

More articles from Life Sciences:

nachricht Glycosylation: Mapping Uncharted Territory
21.09.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Glycosylation: Mapping Uncharted Territory

21.09.2017 | Life Sciences

Highly precise wiring in the Cerebral Cortex

21.09.2017 | Health and Medicine

Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?

21.09.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>