Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Alternative energy: A cooler way to clean hydrogen

25.06.2013
Converting bioethanol into hydrogen for fuel cells becomes significantly simpler with innovative metal catalysts

A process known as ethanol steam reforming is creating opportunities for fuel cell researchers, thanks to the recent rise of the bioethanol industry. This technique generates hydrogen gas (H2) directly within fuel cell systems onboard vehicles by decomposing bioethanol in the presence of special catalysts — an approach that could use current gasoline delivery infrastructures to power alternative energy transportation.

Currently, ethanol steam reforming suffers from a major obstacle: its multiple reaction pathways can produce toxic carbon monoxide (CO) byproducts that ruin fuel cell membranes.

Lin Huang, Jianyi Lin and co-workers from the A*STAR Institute of Chemical and Engineering Sciences in Singapore have now prepared a novel metal catalyst that can eradicate CO emissions from ethanol-derived H2 at temperatures 50 °C lower than previous catalysts1.

Low-temperature ethanol steam reforming boosts the safety and efficiency of fuel processing onboard vehicles, but requires a careful choice of catalysts. Rhodium (Rh), a relatively scarce transition metal, has gained attention among chemists because it targets ethanol’s carbon–carbon bond — the most difficult part of the alcohol to decompose. However, Rh catalysts tend to generate CO and methane byproducts when steam reforming conditions fall below 350 °C.

Huang, Lin and co-workers investigated whether they could resolve Rh’s shortcomings with cobalt (Co), a less expensive transition metal that has high selectivity toward H2 production at low temperatures. They explored whether Co could be combined with Rh on a nanostructured oxide surface to produce a dual-component catalyst. While making a mixed catalyst is relatively straightforward, finding one that maximizes the benefits of both metals for efficient steam reforming is not as easy. Therefore, the team investigated how different metallic precursors could achieve an ideal interaction between Rh and Co atoms on the supporting surface.

Their experiments revealed that catalysts consisting of Rh and Co, prepared from metal carbonyl precursors, gave high yields of extraordinarily clean H2 with no CO emissions at temperatures as low as 300 °C. According to Huang, these findings indicate that atomic interactions between the metals favor a particular pathway, known as the water–gas shift, which converts CO and water into H2 and carbon dioxide. However, mixed catalysts made from metal nitrate precursors failed to yield CO-free H2, presumably because of poor atomic interactions.

The team now faces two challenges: uncovering the mechanistic reasons why supported Rh–Co dual-component catalysts are so effective; and, reducing the build-up of carbonaceous coke deposits that adversely affect catalytic activity and stability during ethanol steam reforming.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Chemical and Engineering Sciences

Journal information
Huang, L., Choong, C., Chen, L., Wang, Z., Zhong, Z., Campos-Cuerva, C. & Lin, J. Monometallic carbonyl-derived CeO2-supported Rh and Co bicomponent catalysts for CO-free, high-yield H2 generation from low-temperature ethanol steam reforming. ChemCatChem 5, 220–234 (2013).

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6692
http://www.researchsea.com

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>