Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Alternative energy: A cooler way to clean hydrogen

25.06.2013
Converting bioethanol into hydrogen for fuel cells becomes significantly simpler with innovative metal catalysts

A process known as ethanol steam reforming is creating opportunities for fuel cell researchers, thanks to the recent rise of the bioethanol industry. This technique generates hydrogen gas (H2) directly within fuel cell systems onboard vehicles by decomposing bioethanol in the presence of special catalysts — an approach that could use current gasoline delivery infrastructures to power alternative energy transportation.

Currently, ethanol steam reforming suffers from a major obstacle: its multiple reaction pathways can produce toxic carbon monoxide (CO) byproducts that ruin fuel cell membranes.

Lin Huang, Jianyi Lin and co-workers from the A*STAR Institute of Chemical and Engineering Sciences in Singapore have now prepared a novel metal catalyst that can eradicate CO emissions from ethanol-derived H2 at temperatures 50 °C lower than previous catalysts1.

Low-temperature ethanol steam reforming boosts the safety and efficiency of fuel processing onboard vehicles, but requires a careful choice of catalysts. Rhodium (Rh), a relatively scarce transition metal, has gained attention among chemists because it targets ethanol’s carbon–carbon bond — the most difficult part of the alcohol to decompose. However, Rh catalysts tend to generate CO and methane byproducts when steam reforming conditions fall below 350 °C.

Huang, Lin and co-workers investigated whether they could resolve Rh’s shortcomings with cobalt (Co), a less expensive transition metal that has high selectivity toward H2 production at low temperatures. They explored whether Co could be combined with Rh on a nanostructured oxide surface to produce a dual-component catalyst. While making a mixed catalyst is relatively straightforward, finding one that maximizes the benefits of both metals for efficient steam reforming is not as easy. Therefore, the team investigated how different metallic precursors could achieve an ideal interaction between Rh and Co atoms on the supporting surface.

Their experiments revealed that catalysts consisting of Rh and Co, prepared from metal carbonyl precursors, gave high yields of extraordinarily clean H2 with no CO emissions at temperatures as low as 300 °C. According to Huang, these findings indicate that atomic interactions between the metals favor a particular pathway, known as the water–gas shift, which converts CO and water into H2 and carbon dioxide. However, mixed catalysts made from metal nitrate precursors failed to yield CO-free H2, presumably because of poor atomic interactions.

The team now faces two challenges: uncovering the mechanistic reasons why supported Rh–Co dual-component catalysts are so effective; and, reducing the build-up of carbonaceous coke deposits that adversely affect catalytic activity and stability during ethanol steam reforming.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Chemical and Engineering Sciences

Journal information
Huang, L., Choong, C., Chen, L., Wang, Z., Zhong, Z., Campos-Cuerva, C. & Lin, J. Monometallic carbonyl-derived CeO2-supported Rh and Co bicomponent catalysts for CO-free, high-yield H2 generation from low-temperature ethanol steam reforming. ChemCatChem 5, 220–234 (2013).

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6692
http://www.researchsea.com

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>