Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

All creatures great and small: How the environment controls traits

11.03.2015

Ground breaking epigenetics research has implications for everything from cancer to farming

Until now scientists have believed that the variations in traits such as our height, skin colour, tendency to gain weight or not, intelligence, tendency to develop certain diseases, etc., all of them traits that exist along a continuum, were a result of both genetic and environmental factors. But they didn't know how exactly these things worked together. By studying ants, McGill researchers have identified a key mechanism by which environmental (or epigenetic) factors influence the expression of all of these traits, (along with many more).


McGill researchers have discovered that environmental factors play a crucial role in determining complex traits like size

Credit: Mélanie Couture and Dominic Ouellette

They believe that, by identifying a key gene for each trait and how it is affected epigenetically (by the environment), it is potentially possible to influence the degree of its expression - and so create variation in how specific traits are expressed. It's a bit like an artist adding more or less white paint to black to create a palette of shades of gray. In effect, it is the discovery of the mechanism through which the environment interacts with specific genes, revealing environmental factors as an equal partner in determining complex traits.

A McGill team led by Profs. Moshe Szyf and Ehab Abouheif, from the McGill's Departments of Pharmacology and Therapeutics, and Biology respectively, has clearly identified a mechanism by which epigenetic factors - how the environment affects the expression of a single gene - have an overarching effect in creating quantitative variation in these kinds of complex traits.

The researchers arrived at this conclusion by conducting epigenetic experiments on ants from the species Camponotus floridanus (better known as the Florida carpenter ant). Because there is little genetic influence in determining size variation of workers in a colony (they are on average 75 per cent related) and because their genome has already been sequenced it was possible for the researchers to focus on the effects of epigenetic factors in creating variations in size.

The enviro-genetics of a superhero: Ant Man

By increasing the degree of DNA methylation (a biochemical process that controls the expression of certain genes - a bit like a dimmer can turn a light up or down) of a gene involved in controlling growth called Egfr, they were able to create a spectrum of worker ant sizes despite the lack of genetic difference between one ant and the next. Essentially, the researchers found that the more methylated the gene, the larger the size of the ants.

"Basically, what we found was a kind of cascading effect. By modifying the methylation of one particular gene, that affects others, in this case the Egfr gene, we could affect all the other genes involved in cellular growth," says Sebastian Alvarado, the McGill PhD who is the co-first author on the study that was published today in Nature Communications. "We were working with ants, but it was a bit like discovering that we could create shorter or taller human beings."

Finding the right gene to work on

"In the case of growth in ants, it was the Egfr gene which was determinant," says Rajendhran Rajakumar, co-first author of the paper. "But for other complex traits, whether they are involved in the growth of cancer cells in humans or fat cells in chickens, what we now know is that once we have discovered, in each case, the key genetic position that is affected by epigenetic factors we can then influence how much or how little of the gene is expressed with potentially very far-reaching results."

"It's a discovery that completely changes our understanding of how human variation comes to be," says Abouheif. "So many human traits, whether they are intelligence, height, or vulnerability to diseases such as cancer, exist along a continuum. If, as we believe, this epigenetic mechanism applies to a key gene in each area, the change is so enormous that it's hard to even imagine right now how it will influence research in everything from health to cognitive development to farming."

###

This work is the result of collaboration between the Department of Pharmacology and Therapeutics (PhD student Sebastian Alvarado and Professor Moshe Szyf) and the Department of Biology (PhD student Rajendhran Rajakumar and Professor Ehab Abouheif) at McGill University.

To read the full article by Alvarado et al in Nature Communications: http://www.nature.com/ncomms/index.html

To contact the researchers directly:

Ehab Abouheif (for French and English interviews)

Moshe Szyf (English interviews only)

High profile researchers who can comment on the article:

Prof. Gene Robinson (generobi@illinois.edu) at the University of Illinois, Urbana Champagne

Prof. Ryszard Maleszka (ryszard.maleszka@anu.edu.au) at the Australian National University

Prof. Juergen Gadau (Juergen.Gadau@asu.edu) at Arizona State University

Prof. Michael Goodisman (michael.goodisman@biology.gatech.edu) at Georgia Tech University

Katherine Gombay | EurekAlert!

More articles from Life Sciences:

nachricht Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth
01.03.2017 | Hochschule für Angewandte Wissenschaften Hamburg

nachricht Researchers Imitate Molecular Crowding in Cells
01.03.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>