Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Alaska frogs reach record lows in extreme temperature survival

23.07.2014

Freezing and thawing might not be good for the average steak, but it seems to help wood frogs each fall as they prepare to survive Alaska’s winter cold.

“Alaska wood frogs spend more time freezing and thawing outside than a steak does in your freezer and the frog comes back to life in the spring in better shape than the steak,” said Don Larson, University of Alaska Fairbanks graduate student and lead author on a recent paper demonstrating that freeze tolerance in Alaska wood frogs is more extreme than previously thought.

Although wood frogs are well-studied freeze-tolerant amphibians, Larson’s research is believed to be the first to examine the frogs under natural conditions.

In subarctic Interior Alaska, wood frogs overwinter in the ground covered by duff and leaf litter, creating a hibernacula, where temperatures can remain below freezing for more than six months with minimum temperatures of minus four (minus 20 Celsius).

Tracking wood frogs to their natural hibernacula, and using a fenced hibernacula in the Biological Reserve north of the UAF campus, Larson and co-author Brian Barnes, director of the UAF Institute of Arctic Biology and an expert in cold-climate physiology, wanted to know how cold and how long Alaska’s wood frogs could survive in their natural habitat.

“Imagine what happens when you suck on a freeze pop,” said Larson. “After you’ve sucked out all the sweet stuff, you’re left with just ice. That’s what happens to cells when they freeze. As ice formation pulls the water out of cells, the cells desiccate or dry out and eventually die.”

Frogs prevent this freeze-pop effect by packing their cells with glucose (a kind of sugar) that reduces drying and stabilizes cells, a process scientists call cryoprotection.             

“Concentrating sugar inside the cell helps balance the concentration of salts outside the cell that occurs as ice forms,” said Barnes. “Less water leaves the cell than if sugar was not present and sugar and other cryoprotectants are thought to "hold" water inside the cell.”

The curious thing Larson discovered is that when wood frogs are outside in their natural environment they accumulate much higher concentrations of glucose in their tissues than do frogs frozen in the lab.

Glucose concentrations in the outside frogs were 13-fold higher in muscle tissue, 10-fold higher in heart tissue and 3.3-fold higher in liver tissue compared to lab-frozen frogs, as described in their paper published in the Journal of Experimental Biology.  

This extra protection enabled frogs to survive colder temperatures for a longer time than scientists previously thought, but Larson and Barnes wondered how they accumulated so much glucose?

Larson thinks the process that creates freezer burn on a frozen steak gives frogs the ability to survive being frozen at minimum temperatures below zero (minus 18 Celsius) for up to 218 days with 100 percent survival.

Frogs collected from sites in the Eastern U.S. and Canada have previously been shown to only survive being frozen for a few weeks and to no lower than about 19 degrees (minus 7.2 Celsius).

“In the field in early Autumn it’s freezing during the night, thawing slightly during the day, and these repeated freezing episodes stimulate the frogs to release more and more glucose,” Larson said. “It’s not warm enough for long enough for the frog to reclaim much of that glucose and over time it accumulates giving the frog more protection against cell damage.”

Lab-frozen frogs are held at a constant temperature and without the freeze-thaw cycles Larson observed in the wild and so the frogs made glucose only when they initially froze and that was that.

“Whether the extremes in freezing tolerance in Alaska frogs as compared to more southern populations are due to  patterns of temperature change during freezing or are due to genetic differences, and thereby represent  evolutionary change, awaits further study,” said Barnes.

The feats of freezing frogs are more than just a curiosity and may one day have application in the science of human organ transplantation.

“If science can figure out how to freeze human organs without damage it would allow more time to reach people in need of organs,” said Larson.

This research was funded by the National Science Foundation.

ADDITIONAL CONTACTS: Don Larson, djlarson@alaska.edu, 907-474-6067. Brian M. Barnes, bmbarnes@alaska.edu, 907-474-7649.

Marie Thoms | Eurek Alert!
Further information:
http://www.iab.uaf.edu/news/news_release_by_id.php?release_id=124

Further reports about: Alaska Arctic Biology Glucose Tracking damage environment freezer liver temperature

More articles from Life Sciences:

nachricht Study suggests oysters offer hot spot for reducing nutrient pollution
17.10.2017 | Virginia Institute of Marine Science

nachricht World first for reading digitally encoded synthetic molecules
17.10.2017 | CNRS

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Study suggests oysters offer hot spot for reducing nutrient pollution

17.10.2017 | Life Sciences

Breaking: the first light from two neutron stars merging

17.10.2017 | Physics and Astronomy

World first for reading digitally encoded synthetic molecules

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>