Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ADHD children make poor decisions due to less differentiated learning processes

21.08.2014

Attention-Deficit/Hyperactivity Disorder (ADHD) is one of the most common psychiatric disorders among school children. Pupils with ADHD often make poorer decisions than their unaffected classmates. Researchers from the University of Zurich now discovered that different learning and decision-making mechanisms are responsible for these behaviors, and localized the underlying impairments in the brain.

Which shirt do we put on in the morning? Do we drive to work or take the train? From which takeaway joint do we want to buy lunch? We make hundreds of different decisions every day. Even if these often only have a minimal impact, it is extremely important for our long-term personal development to make decisions that are as optimal as possible. People with ADHD often find this difficult, however.

They are known to make impulsive decisions, often choosing options which bring a prompt but smaller reward instead of making a choice that yields a greater reward later on down the line. Researchers from the University Clinics for Child and Adolescent Psychiatry, University of Zurich, now reveal that different decision-making processes are responsible for such suboptimal choices and that these take place in the middle of the frontal lobe.

Mathematical models help to understand the decision-making processes
In the study, the decision-making processes in 40 young people with and without ADHD were examined. Lying in a functional magnetic resonance imaging scanner to record the brain activity, the participants played a game where they had to learn which of two images carried more frequent rewards.

In order to understand the impaired mechanisms of participants with ADHD better, learning algorithms which originally stemmed from the field of artificial intelligence were used to evaluate the data. These mathematical models help to understand the precise learning and decision-making mechanisms better.

“We were able to demonstrate that young people with ADHD do not inherently have difficulties in learning new information; instead, they evidently use less differentiated learning patterns, which is presumably why sub-optimal decisions are often made”, says first author Tobias Hauser.

Multimodal imaging affords glimpses inside the brain
In order to study the brain processes that triggered these impairments, the authors used multimodal imaging methods, where the participants were examined using a combined measurement of functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) to record the electrical activity and the blood flow in the brain. It became apparent that participants with ADHD exhibit an altered functioning in the medial prefrontal cortex – a region in the middle of the frontal lobe.

This part of the brain is heavily involved in decision-making processes, especially if you have to choose between several options, and in learning from errors. Although a change in activity in this region was already discovered in other contexts for ADHD, the Zurich researchers were now also able to pinpoint the precise moment of this impairment, which already occurred less than half a second after a feedback, i.e. at a very early stage.

Psychologist Tobias Hauser, who is now researching at the Wellcome Trust Centre for Neuroimaging, University College London, is convinced that the results fundamentally improve our understanding of the mechanisms of impaired decision-making behavior in people with ADHD. The next step will be to study the brain messenger substances. “If our findings are confirmed, they will provide key clues as to how we might be able to design therapeutic interventions in future,” explains Hauser.


Literature:
Tobias U. Hauser, Reto Iannaccone, Juliane Ball, Christoph Mathys, Daniel Brandeis, Susanne Walitza & Silvia Brem: Role of Medial Prefrontal Cortex in Impaired Decision Making in Juvenile Attention-Deficit/Hyperactivity Disorder, in: JAMA Psychiatry, doi: 10.1001/jamapsychiatry.2014.1093


Contacts:
Dr. Tobias Hauser
University Clinics for Child and Adolescent Psychiatry, University of Zurich, and
Wellcome Trust Centre for Neuroimaging, University College London
Phone: +44 74 749 030 03
Email: t.hauser@ucl.ac.uk

Weitere Informationen:

http://www.mediadesk.uzh.ch

Nathalie Huber | Universität Zürich

Further reports about: ADHD Neuroimaging Psychiatry activity decision-making decisions models participants processes

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>