Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Activation against Malaria

Facile Oxidation of Leucomethylene Blue and Dihydroflavins by Artemisinins

In combination therapies against malaria, artemisinins are currently the most effective drugs used. Although the subject of intense research for many years, artemisinin's molecular mechanism of action remains a topic of debate.

A much clearer picture of how this compound class works would provide crucial information in the effort to create more effective antimalarial drugs that are less susceptible to resistance. A conventional model suggests that artemisinin elicits its effects through the formation of heme-derived FeII and C-centered radicals. However, a research project led by Richard K. Haynes and Diego Monti has provided strong evidence to counter this model, and their results are reported in the journal ChemMedChem.

"Our research reveals completely new chemistry that includes the formation of unexpected products and which is coherent with relevant enzyme assays," says Haynes. "It directs the science away from the FeII activation theory that is universally held to underpin the antimalarial action of artemisinins. The lead into this work was the use of methylene blue (MB) as an antimalarial drug and the synergistic effect it displays with artemisinins. This is compatible with the idea that artemisinins, like MB, are redox-active molecules that interfere with redox enzymes important for the malaria parasite. MB is converted by reduced flavin cofactors into leucomethylene blue, which initiates a redox cycle involving molecular oxygen. We therefore examined the behavior of such reduced cofactors and model compounds with artemisinins. Importantly, we were able to generate the reduced cofactors catalytically in neutral aqueous (biologically relevant) buffer in the presence of artemisinin and biological reductants, the latter of which alone do not affect the artemisinins. In this sense, our work differs from virtually every other chemical/mechanistic study that has been carried out to date. We report that artemisinins are able to undergo both one-electron transfer and two-electron reduction, and both sets of reactions must have biological consequences."

As for the next step in this project, Haynes and Monti indicate that "Whilst we have not yet tried to pinpoint the flavin cofactor of any particular intra-parasitic enzyme that may be targeted, it is apparent that several flavoenzymes are susceptible to artemisinins. Detailed biochemical and kinetic investigations are being conducted in follow-up studies."

Author: Richard K. Haynes, The Hong Kong University of Science and Technology (China),

Title: Facile Oxidation of Leucomethylene Blue and Dihydroflavins by Artemisinins: Relationship with Flavoenzyme Function and Antimalarial Mechanism of Action

ChemMedChem 2010, 5, No. 8, 1282–1299, Permalink to the article:

Richard K. Haynes | Wiley-VCH
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>