Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Action of modern drug demonstrates how 2 ancient human systems interact

17.06.2010
Implications for Reducing Clotting in Kidney Disease Dialysis and Sepsis

The interaction of the drug compstatin with two ancient, co-evolved human systems points to new ways for reducing clotting during dialysis for end-stage kidney disease and multiple organ failure due to sepsis, a dangerous whole-body inflammatory response to infection.

“It has been suspected, but not demonstrated in vivo, until now, that these two systems are able to interact,” says study author John D. Lambris, PhD, the Dr. Ralph and Sallie Weaver Professor of Research Medicine at the University of Pennsylvania School of Medicine. “Our basic research on these two human systems is helping us to come up with new ways to stop clotting problems.”

One system, called complement, an evolutionarily old arm of the immune system, comprises a network of proteins that “complement” the work of antibodies in destroying foreign invaders. The system serves as a rapid defense mechanism in most species from primitive sponges to humans.

The second system, coagulation, or blood-clotting, is also evolutionarily old and co-evolved with the complement system.

Penn researchers, along with an international team of collaborators, describe that inhibition of the complement system using compstatin helps to stop clotting problems during dialysis and in cases of sepsis, according to two recent articles published online in Blood.

Compstatin is a small molecule designed to specifically and maximally inhibit the complement harmful reactions by attaching to a complement molecule called C3.

Reaction to Dialysis Materials

Complement activation is often triggered by the tubing and filters used during dialysis itself, causing problems with blood clotting. However, the mechanism by which long-term dialysis causes clotting has not been clear. In the U.S. more than 500,000 receive treatment for end-stage renal disease annually.

In recent years, the adverse effects of dialysis have become a serious health and economic problem nationwide: The number of patients with end-stage renal disease has been steadily increasing in the U.S. over the past few decades, at a rate of approximately 9 percent per year, the highest increase in any developed country.

To solve this problem, Lambris reasoned that if the complement system was involved in triggering blood clotting, then inhibition of complement by compstatin binding to C3 would also stop the clotting. “We found that materials used in dialysis trigger the complement system and that the generation of certain complement molecules results in the expression of active tissue factor, a key initiator of clotting,” said Lambris. The Penn group found that compstatin blocks the generation of the complement molecules C5a, which stimulates the release of tissue factor from neutrophils.

These findings suggest that compstatin, or other drugs that target the complement system, might be therapeutic agents to prevent clotting in patients with renal failure who are maintained on long-term dialysis.

Staying Sepsis

During severe sepsis, which accounts for about 210,000 deaths annually in the US, the complement system is part of the primary response to an invading pathogen. However, both the complement and the coagulation systems can work overtime during sepsis, leading to multiple organ failure and death.

In a baboon model of severe sepsis caused by a sub-lethal dose of E. coli, Lambris and colleagues found that treating the animals with compstatin during the acute or secondary phase of sepsis reduced both blood and tissue markers of complement activation and blood coagulation.

“Similar to the dialysis study, this shows that there is an interplay between the complement and coagulation systems,” said Lambris.

Blocking the interplay between the two systems by compstatin, or a similar drug, may become a therapeutic strategy to prevent the devastating effects of sepsis.

“We are investigating several compstatin-related compounds that are one thousand times more active than compstatin, which was discovered in our lab 13 years ago,” said Lambris. Toxicity studies will be required before these newer compounds can move into human trials.

The Penn studies were done in collaboration with researchers at the Democritus University of Thrace, Greece; the University of Oslo, Sweden; the Oklahoma Medical Research Foundation; and the Oklahoma University.

These studies were supported by grants from the National Institute of Allergy and Infectious Diseases; the National Institute of General Medical Sciences; and the National Institute of Biomedical Imaging and Bioengineering.

This release can be found at: http://www.uphs.upenn.edu/news/News_Releases/2010/06/action-of-modern-drug/.

Penn Medicine is one of the world’s leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the University of Pennsylvania School of Medicine (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $3.6 billion enterprise.

Penn’s School of Medicine is currently ranked #2 in U.S. News & World Report’s survey of research-oriented medical schools, and is consistently among the nation’s top recipients of funding from the National Institutes of Health, with $367.2 million awarded in the 2008 fiscal year.

Penn Medicine’s patient care facilities include:

The Hospital of the University of Pennsylvania – the nation’s first teaching hospital, recognized as one of the nation’s top 10 hospitals by U.S. News & World Report.
Penn Presbyterian Medical Center – named one of the top 100 hospitals for cardiovascular care by Thomson Reuters for six years.
Pennsylvania Hospital – the nation’s first hospital, founded in 1751, nationally recognized for excellence in orthopaedics, obstetrics & gynecology, and behavioral health.

Additional patient care facilities and services include Penn Medicine at Rittenhouse, a Philadelphia campus offering inpatient rehabilitation and outpatient care in many specialties; as well as a primary care provider network; a faculty practice plan; home care and hospice services; and several multispecialty outpatient facilities across the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2009, Penn Medicine provided $733.5 million to benefit our community.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>