Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Action of modern drug demonstrates how 2 ancient human systems interact

17.06.2010
Implications for Reducing Clotting in Kidney Disease Dialysis and Sepsis

The interaction of the drug compstatin with two ancient, co-evolved human systems points to new ways for reducing clotting during dialysis for end-stage kidney disease and multiple organ failure due to sepsis, a dangerous whole-body inflammatory response to infection.

“It has been suspected, but not demonstrated in vivo, until now, that these two systems are able to interact,” says study author John D. Lambris, PhD, the Dr. Ralph and Sallie Weaver Professor of Research Medicine at the University of Pennsylvania School of Medicine. “Our basic research on these two human systems is helping us to come up with new ways to stop clotting problems.”

One system, called complement, an evolutionarily old arm of the immune system, comprises a network of proteins that “complement” the work of antibodies in destroying foreign invaders. The system serves as a rapid defense mechanism in most species from primitive sponges to humans.

The second system, coagulation, or blood-clotting, is also evolutionarily old and co-evolved with the complement system.

Penn researchers, along with an international team of collaborators, describe that inhibition of the complement system using compstatin helps to stop clotting problems during dialysis and in cases of sepsis, according to two recent articles published online in Blood.

Compstatin is a small molecule designed to specifically and maximally inhibit the complement harmful reactions by attaching to a complement molecule called C3.

Reaction to Dialysis Materials

Complement activation is often triggered by the tubing and filters used during dialysis itself, causing problems with blood clotting. However, the mechanism by which long-term dialysis causes clotting has not been clear. In the U.S. more than 500,000 receive treatment for end-stage renal disease annually.

In recent years, the adverse effects of dialysis have become a serious health and economic problem nationwide: The number of patients with end-stage renal disease has been steadily increasing in the U.S. over the past few decades, at a rate of approximately 9 percent per year, the highest increase in any developed country.

To solve this problem, Lambris reasoned that if the complement system was involved in triggering blood clotting, then inhibition of complement by compstatin binding to C3 would also stop the clotting. “We found that materials used in dialysis trigger the complement system and that the generation of certain complement molecules results in the expression of active tissue factor, a key initiator of clotting,” said Lambris. The Penn group found that compstatin blocks the generation of the complement molecules C5a, which stimulates the release of tissue factor from neutrophils.

These findings suggest that compstatin, or other drugs that target the complement system, might be therapeutic agents to prevent clotting in patients with renal failure who are maintained on long-term dialysis.

Staying Sepsis

During severe sepsis, which accounts for about 210,000 deaths annually in the US, the complement system is part of the primary response to an invading pathogen. However, both the complement and the coagulation systems can work overtime during sepsis, leading to multiple organ failure and death.

In a baboon model of severe sepsis caused by a sub-lethal dose of E. coli, Lambris and colleagues found that treating the animals with compstatin during the acute or secondary phase of sepsis reduced both blood and tissue markers of complement activation and blood coagulation.

“Similar to the dialysis study, this shows that there is an interplay between the complement and coagulation systems,” said Lambris.

Blocking the interplay between the two systems by compstatin, or a similar drug, may become a therapeutic strategy to prevent the devastating effects of sepsis.

“We are investigating several compstatin-related compounds that are one thousand times more active than compstatin, which was discovered in our lab 13 years ago,” said Lambris. Toxicity studies will be required before these newer compounds can move into human trials.

The Penn studies were done in collaboration with researchers at the Democritus University of Thrace, Greece; the University of Oslo, Sweden; the Oklahoma Medical Research Foundation; and the Oklahoma University.

These studies were supported by grants from the National Institute of Allergy and Infectious Diseases; the National Institute of General Medical Sciences; and the National Institute of Biomedical Imaging and Bioengineering.

This release can be found at: http://www.uphs.upenn.edu/news/News_Releases/2010/06/action-of-modern-drug/.

Penn Medicine is one of the world’s leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the University of Pennsylvania School of Medicine (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $3.6 billion enterprise.

Penn’s School of Medicine is currently ranked #2 in U.S. News & World Report’s survey of research-oriented medical schools, and is consistently among the nation’s top recipients of funding from the National Institutes of Health, with $367.2 million awarded in the 2008 fiscal year.

Penn Medicine’s patient care facilities include:

The Hospital of the University of Pennsylvania – the nation’s first teaching hospital, recognized as one of the nation’s top 10 hospitals by U.S. News & World Report.
Penn Presbyterian Medical Center – named one of the top 100 hospitals for cardiovascular care by Thomson Reuters for six years.
Pennsylvania Hospital – the nation’s first hospital, founded in 1751, nationally recognized for excellence in orthopaedics, obstetrics & gynecology, and behavioral health.

Additional patient care facilities and services include Penn Medicine at Rittenhouse, a Philadelphia campus offering inpatient rehabilitation and outpatient care in many specialties; as well as a primary care provider network; a faculty practice plan; home care and hospice services; and several multispecialty outpatient facilities across the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2009, Penn Medicine provided $733.5 million to benefit our community.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>