Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ability to navigate may be linked to genes

02.02.2010
Imagine that you are emerging from the subway and heading for your destination when you realize that you are going in the wrong direction. For a moment, you feel disoriented, but a scan of landmarks and the layout of the surrounding streets quickly helps you pinpoint your location, and you make it to your appointment with time to spare.

Research tells us that human adults, toddlers, rats, chicks and even fish routinely and automatically accomplish this kind of "reorientation" by mentally visualizing the geometry of their surroundings and figuring out where they are in space. Until now, however, we haven't understood that genes may play a part in that ability.

Writing this week in the online Early Edition of the Proceedings of the National Academy of Sciences, a team led by Barbara Landau, the Dick and Lydia Todd Professor in the Department of Cognitive Science at The Johns Hopkins University, for the first time links genes to our ability to navigate the world.

"We found that people with a rare genetic disorder cannot use one of the very basic systems of navigation that is present in humans as early as 18 months and shared across a wide range of species," Landau said. "To our knowledge, this is the first evidence from human studies of a link between the missing genes and the system that we use to reorient ourselves in space."

Working with lead author Laura Lakusta of Montclair State University in New Jersey and co-author Banchiamlack Dessalegn, a postdoctoral fellow at University of Chicago (both of whom recently received their Ph.D.s at Johns Hopkins under Landau's direction and carried out the research there), Landau's study involved people with a rare genetic disorder known as Williams syndrome. Named for its discoverer, New Zealander Dr. J. C. P. Williams, the syndrome is caused when a small amount of genetic material is missing from one human chromosome. People with Williams syndrome are extremely social and verbally adept, but have difficulty with tasks such as assembling simple puzzles, copying basic patterns and navigating their bodies through the physical world. Williams syndrome occurs in one in 7,500 live births.

In the study, Landau's team challenged people with Williams syndrome to watch while someone hid an object beneath a small cloth flap in one corner of a small rectangular room with four solid black walls that had no landmarks. Subjects were then blindfolded and spun around (think "Pin the Tail on the Donkey") for about 10 seconds to disorient them. Once the blindfold was taken off, the subjects were asked to find the hidden object.

According to Landau, the people with Williams syndrome searched the four corners randomly; indicating that their ability to mentally visualize the layout of the room and quickly find which corner held the hidden object is severely impaired.

"They searched the room for the hidden object randomly, as if they had never before seen the overall geometry of the room or the lengths of the walls and their geometric – left and right – relation to each other," Landau explained. "If they could imagine the overall shape of the room's layout – that there are four walls, two of them long and two of them short and that the toy was hidden in a corner that has a short wall on the right and the long wall on the left – then they should have guessed that one of the two 'geometrically equivalent corners' was the right place. This is what typically developing humans do, as early as 18 months of age."

Control subjects (healthy college-aged students) responded more typically, searching for the object in one of the two geometrically equivalent corners, as has been found in studies by many other investigators.

According to Landau, the results of this study provides another clue to the link between how genes work, how brains develop and become specialized and what can go wrong to result in very basic cognitive system malfunctioning.

"Although we are quite far from understanding the links between the specific genes that are missing in Williams syndrome and the behavior they show, such as failure to reorient, it is clear that the missing genes ultimately have some effect on the brain," she said. "Our evidence is the first to directly show a substantial deficit in this reorientation system that is caused by missing genes in humans."

The study was underwritten by a grant from the National Institutes of Health.

Digital photos of Landau are available. Contact Lisa De Nike at Lde@jhu.edu or 443-287-9960.

For more on Landau and her work, go here:

http://web.jhu.edu/cogsci/people/faculty/Landau/
http://neuroscience.jhu.edu/BarbaraLandau.php
http://krieger.jhu.edu/magazine/f09/f3.html

Lisa Ercolano | EurekAlert!
Further information:
http://www.jhu.edu

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>