Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A view into the human body: the formation of cell organelles

06.02.2009
New pathway for peroxisomal membrane proteins identified

Scientists at the RUB publish the results of their study in the Journal of Biological Chemistry


Pathways of peroxisomal membrane proteins: Type 1 peroxisomal membrane proteins (PMPs) are synthesized on free ribosomes within the cytosol and bound to the peroxisomal membrane immediately after formation. By contrast, the Type 2 PMPs, which, according to the data gained in this study, include Pex3p and Pex22p, are initially transported to the endoplasmic reticulum and only subsequently to the peroxisomes.

Peroxisomes, multifaceted functional units within cells, fulfil the most diverse of tasks. In human beings, failure of these organelles is fatal. Their biogenesis does not adhere to the standard rules and still remains to be fully clarified. Scientists from the research team under the auspices of Prof. Ralf Erdmann and Dr. Hanspeter Rottensteiner (Department of Systemic Biochemistry, Medical Faculty at the Ruhr University) have identified a new pathway for components of the peroxisomal membrane proteins.

The data gained is a significant contribution towards the comprehension of the formation and origin of peroxisomes. The results have been published in the renowned "Journal of Biological Chemistry."

Peroxisomes: Organelles with multifaceted functions

Peroxisomes are organelles responsible for a multitude of metabolic functions within cells. They contain over 50 different functional enzymes capable of forming highly variable structures adapted to the specific needs of the organism. One of the most important features of peroxisomes is the spatial isolation (compartmentalization) of metabolic pathways in which poisonous hydrogen peroxide is formed. Its destruction thereof is one of the most important functions of the peroxisomes.

Illnesses due to peroxisomal defects are usually fatal

Prof. Erdmann explained that the significance of these organelles is illustrated by the illnesses of patients suffering from defects in individual enzymes or a disorder in the biogenesis of the peroxisomes. Illnesses resulting from a biogenetic disorder are subsumed as the Zellweger spectrum and are usually so severe that the patients die during infancy. Clarification of the biogenesis of these organelles is essential for the development of approaches for diagnosis and treatment of these diseases.

Indirect formation of membranes

The research team at the RUB investigated - amongst other things - the origin and biogenesis of the peroxisomal membranes. Prof. Erdmann explained that the peroxisomal protein import machinery has to be assembled before the peroxisome can import the numerous enzymes required. The Pex3p protein is a decisive factor for importing membrane proteins, functioning as docking site on the membrane. These docking sites enable targeted insertion of newly formed proteins. To date, it has still not been fully clarified how Pex3p per se is integrated into the membrane. It could, however, be shown that newly formed Pex3p is initially incorporated in the cellular fluid of the endoplasmic reticulum (ER, another cell organelle). The subsequent mode of transport of Pex3p to the peroxisomes is still unknown. Prof. Erdmann stated that there is a significant difference between this pathway and that of other peroxisomal membrane proteins. The latter are incorporated directly into existent peroxisomes and require Pex3p for this procedure.

Assumed exclusive pathway transpired to be common

To date it has been assumed that Pex3p is the only peroxisomal protein that reaches the peroxisomes via the endoplasmic reticulum. The scientists at the RUB have now been able to prove that this is not the case. They compared the import pathways of Pex3p with those of Pex22p, another peroxisomal membrane protein, and were able to demonstrate that in each case a small fraction of these proteins already suffices to transport a fluorescent reporter protein to the peroxisomes. The segments of the protein that target a specific site are termed signal sequences. The similarity between Pex3p and Pex22p signal sequences induced the scientists to exchange the two parts using molecular biological techniques and to subsequently investigate the functionality of the two thus altered proteins. Their analyses disclosed that the signal sequences of the two proteins are interchangeable without affecting their peroxisomal targeting. Further investigations showed that both proteins use the same pathway. This implies that this pathway is not exclusively used by Pex3p (as assumed to date) but rather constitutes a newly identified general pathway for peroxisomal membrane proteins. Moreover, this study showed that the Pex3p-signal sequence is responsible for targeting, but not - in contrast to the generally accepted opinion - for the specific function of Pex3p in the biogenesis of the peroxisomes.

Title

André Halbach, Robert Rucktäschel, Hanspeter Rottensteiner, Ralf Erdmann: The N-domain of Pex22p Can Functionally Replace the Pex3p N-domain in Targeting and Peroxisome Formation. In: The Journal of Biological Chemistry, Vol. 284, Issue 6, 3906-3916, FEBRUARY 6, 2009

Further Information

Prof. Dr. Ralf Erdmann, Department of Systemic Biochemistry at the Ruhr-University Bochum, 44780 Bochum, Tel. +49(0)234/32-24943, E-Mail: Ralf.Erdmann@rub.de

Editorial Staff: Meike Drießen

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de/

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>