Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A view into the human body: the formation of cell organelles

06.02.2009
New pathway for peroxisomal membrane proteins identified

Scientists at the RUB publish the results of their study in the Journal of Biological Chemistry


Pathways of peroxisomal membrane proteins: Type 1 peroxisomal membrane proteins (PMPs) are synthesized on free ribosomes within the cytosol and bound to the peroxisomal membrane immediately after formation. By contrast, the Type 2 PMPs, which, according to the data gained in this study, include Pex3p and Pex22p, are initially transported to the endoplasmic reticulum and only subsequently to the peroxisomes.

Peroxisomes, multifaceted functional units within cells, fulfil the most diverse of tasks. In human beings, failure of these organelles is fatal. Their biogenesis does not adhere to the standard rules and still remains to be fully clarified. Scientists from the research team under the auspices of Prof. Ralf Erdmann and Dr. Hanspeter Rottensteiner (Department of Systemic Biochemistry, Medical Faculty at the Ruhr University) have identified a new pathway for components of the peroxisomal membrane proteins.

The data gained is a significant contribution towards the comprehension of the formation and origin of peroxisomes. The results have been published in the renowned "Journal of Biological Chemistry."

Peroxisomes: Organelles with multifaceted functions

Peroxisomes are organelles responsible for a multitude of metabolic functions within cells. They contain over 50 different functional enzymes capable of forming highly variable structures adapted to the specific needs of the organism. One of the most important features of peroxisomes is the spatial isolation (compartmentalization) of metabolic pathways in which poisonous hydrogen peroxide is formed. Its destruction thereof is one of the most important functions of the peroxisomes.

Illnesses due to peroxisomal defects are usually fatal

Prof. Erdmann explained that the significance of these organelles is illustrated by the illnesses of patients suffering from defects in individual enzymes or a disorder in the biogenesis of the peroxisomes. Illnesses resulting from a biogenetic disorder are subsumed as the Zellweger spectrum and are usually so severe that the patients die during infancy. Clarification of the biogenesis of these organelles is essential for the development of approaches for diagnosis and treatment of these diseases.

Indirect formation of membranes

The research team at the RUB investigated - amongst other things - the origin and biogenesis of the peroxisomal membranes. Prof. Erdmann explained that the peroxisomal protein import machinery has to be assembled before the peroxisome can import the numerous enzymes required. The Pex3p protein is a decisive factor for importing membrane proteins, functioning as docking site on the membrane. These docking sites enable targeted insertion of newly formed proteins. To date, it has still not been fully clarified how Pex3p per se is integrated into the membrane. It could, however, be shown that newly formed Pex3p is initially incorporated in the cellular fluid of the endoplasmic reticulum (ER, another cell organelle). The subsequent mode of transport of Pex3p to the peroxisomes is still unknown. Prof. Erdmann stated that there is a significant difference between this pathway and that of other peroxisomal membrane proteins. The latter are incorporated directly into existent peroxisomes and require Pex3p for this procedure.

Assumed exclusive pathway transpired to be common

To date it has been assumed that Pex3p is the only peroxisomal protein that reaches the peroxisomes via the endoplasmic reticulum. The scientists at the RUB have now been able to prove that this is not the case. They compared the import pathways of Pex3p with those of Pex22p, another peroxisomal membrane protein, and were able to demonstrate that in each case a small fraction of these proteins already suffices to transport a fluorescent reporter protein to the peroxisomes. The segments of the protein that target a specific site are termed signal sequences. The similarity between Pex3p and Pex22p signal sequences induced the scientists to exchange the two parts using molecular biological techniques and to subsequently investigate the functionality of the two thus altered proteins. Their analyses disclosed that the signal sequences of the two proteins are interchangeable without affecting their peroxisomal targeting. Further investigations showed that both proteins use the same pathway. This implies that this pathway is not exclusively used by Pex3p (as assumed to date) but rather constitutes a newly identified general pathway for peroxisomal membrane proteins. Moreover, this study showed that the Pex3p-signal sequence is responsible for targeting, but not - in contrast to the generally accepted opinion - for the specific function of Pex3p in the biogenesis of the peroxisomes.

Title

André Halbach, Robert Rucktäschel, Hanspeter Rottensteiner, Ralf Erdmann: The N-domain of Pex22p Can Functionally Replace the Pex3p N-domain in Targeting and Peroxisome Formation. In: The Journal of Biological Chemistry, Vol. 284, Issue 6, 3906-3916, FEBRUARY 6, 2009

Further Information

Prof. Dr. Ralf Erdmann, Department of Systemic Biochemistry at the Ruhr-University Bochum, 44780 Bochum, Tel. +49(0)234/32-24943, E-Mail: Ralf.Erdmann@rub.de

Editorial Staff: Meike Drießen

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de/

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>